
© 2024 Unity Technologies

Introduction to
multiplayer
networking in Unity

 ⟶ E - B O O K

Contents

Introduction .7

The evolution of Unity tools for multiplayer games 8

Basic concepts .10

Headless servers . 11

UDP packets . 12

UDP versus TCP . 13

Ticks and updates . 14

Latency . 15

Other networking terms . 16

Network synchronization . 16

Techniques for network synchronization 17

Network topologies . 17

Client-server topology . 18

Dedicated game server . 18

Client-hosted listen server 19

Distributed authority . 19

Local or couch multiplayer . 20

Peer-to-peer (P2P) . 20

What is an authoritative server? 20

Network stack . 21

Unity networking solutions . 23

Netcode for GameObjects . 23

Netcode for Entities . 24

Unity Transport . 25

Third-party networking . 26

Setting up your first Netcode project 27

Before you begin . 27

Sample project setup . 28

Installing Netcode for GameObjects 29

Adding the NetworkManager . 30

NetworkObjects . 31

Player NetworkObjects . 32

Creating a Player NetworkObject 33

Multiplayer Play Mode . 36

Creating your own UI start buttons 41

Adding NetworkBehaviour . 41

Authority and ownership properties44

Sync using a NetworkTransform
and NetworkAnimator . 45

Applying client authority . 47

Owner authoritative mode components 49

Syncing with server authority . 49

Singleton design pattern . 53

Network synchronization . 54

Gameplay mechanic . 54

Define a NetworkVariable . 55

Adding an RPC . 57

Trigger mechanic . 59

RPCs versus NetworkVariables . 59

Designing for multiplayer . 60

Network latency and performance .61

Simulating latency . 61

Unity Transport Debug Simulator 61

Network Simulator . 62

Other network conditioners . 63

Client-side interpolation . 64

Client-side prediction and anticipation 65

Why server authority . 65

How client-side prediction works 66

Reconciliation and rollback . 67

Client-side anticipation in Netcode
for GameObjects . 68

Deterministic physics . 70

Client-side prediction in Netcode for Entities 70

Testing and debugging networked games 73

Local testing . 73

Player builds . 73

Multiplayer Play Mode (MPPM) 74

macOS users . 74

Simulating network conditions . 74

Testing client connections . 75

Clients connecting . 75

Clients disconnecting . 75

Host/Server starting the session 75

Host/Server shutting down . 75

Techniques for debugging multiplayer games 76

Command line helper . 77

Multiplayer Services . 78

Matchmaker . 79

Lobby . 80

Relay . 80

Multiplay Hosting . 81

Vivox . 81

Sample projects and resources . 82

Resources for Netcode for GameObjects 82

Unity Learn: Get started with Netcode
for GameObjects . 82

Bitesize samples . 84

Boss Room . 85

Small Scale Competitive Multiplayer template 86

VR Multiplayer template . 88

Resources for Netcode for Entities 89

Getting started with Netcode for Entities 89

ECS Netcode samples . 89

ECS Network Racing . 90

Megacity Metro . 90

Experimental Multiplayer Services package 91

Next steps . 92

© 2024 Unity Technologies 6 of 91 | unity.com

Introduction

When people get together in an online game, something extraordinary happens. That simple
racing game or RPG transforms into a shared experience. What happens there can be
unpredictable, challenging, and, most of all, fun.

Whether we are teaming up against an interstellar saboteur or dueling in an online shooter,
networked multiplayer gaming allows us to collaborate and compete beyond physical
boundaries. This collective interaction is what defines the multiplayer experience.

Developing networked gameplay, however, can be more complex than creating an equivalent
single-player application.

The aim of this guide is to help you get started with developing multiplayer games using
Unity’s network tools. It provides a foundational knowledge of networking concepts and serves
as a primer before you dive into the Unity network samples. It also walks you through a basic
use case with the Starter Assets – ThirdPerson package available on The Unity Asset Store.

This guide assumes you are familiar with Unity and C# development but may be new or just
getting started with networking. It’s designed to help you quickly understand the theoretical
aspects of multiplayer development and prepare you for the practical demos.

This e-book will:

 — Explore the core concepts of Unity multiplayer

 — Explore different multiplayer systems and networking models

 — Set up a simple example using Netcode for GameObjects

https://unity.com/releases/lts
https://assetstore.unity.com/packages/essentials/starter-assets-thirdperson-updates-in-new-charactercontroller-pa-196526

© 2024 Unity Technologies 7 of 91 | unity.com

The evolution of Unity
tools for multiplayer
games

Unity provides a number of multiplayer development tools and solutions. These include the
Netcode for GameObjects and Netcode for Entities frameworks, alongside Unity Gaming
Services (UGS), which features Game Server Hosting (Multiplay) and Vivox for voice and text
chat. Whether you’re building a casual co-op or an open-world MMO, Unity can help you hit the
ground running with multiplayer development.

Unity 6 brings new and improved features for multiplayer games that make integration,
iteration, and deployment more reliable and faster than ever. Here’s a brief look at what’s new in
Unity 6 for multiplayer games:

 — Multiplayer Center: Available as a core package in Unity 6, the Multiplayer Center makes
it easier to set up and develop multiplayer games. New prompts and workflows use
parameters and requirements for your game to suggest relevant packages and services
before generating dynamic templates you can use to start your project.

 — Multiplayer widgets: Multiplayer widgets help you to integrate Unity Gaming Services
(UGS) into your multiplayer game. You can access the widgets as a standalone package,
or from the Multiplayer Center.

 — Multiplayer Tools package: This package improves workflows for multiplayer game
development in Unity, performance with Netcode for GameObjects 2.0, and adds support
for Distributed Authority.

 — Multiplayer Play Mode: This package streamlines your process for validating gameplay
by launching up to four independent, lightweight editor processes from the same assets
on disk. For the most ambitious server-hosted projects, Play Mode Scenarios allows you

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.netcode.gameobjects@2.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.netcode@1.4/manual/index.html
https://docs.unity.com/ugs/en-us/manual/overview/manual/unity-gaming-services-home
https://docs.unity.com/ugs/en-us/manual/overview/manual/unity-gaming-services-home
https://docs.unity.com/ugs/en-us/manual/game-server-hosting/manual/welcome-to-multiplay
https://docs.unity.com/ugs/en-us/manual/vivox-unity/manual/Unity/Unity
https://unity.com/blog/unity-6-features-announcement
https://docs.unity3d.com/6000.0/Documentation/Manual/multiplayer-center.html
https://docs.unity3d.com/Packages/com.unity.multiplayer.widgets@1.0/manual/get-started-learn-widgets.html
https://docs-multiplayer.unity3d.com/tools/current/install-tools/index.html
https://docs-multiplayer.unity3d.com/mppm/current/about/index.html

© 2024 Unity Technologies 8 of 91 | unity.com

| Introduction | The evolution of Unity tools for multiplayer games | Basic concepts |

to configure deployment steps, including the build of your dedicated server, and its
upload straight to your Multiplay Hosting servers.

 — Distributed Authority (beta): Distributed Authority, in beta as of November 2024, is
available to use with Netcode for GameObjects. This package gives clients distributed
ownership of authority over spawned NetcodeObjects during a game session. The
netcode simulation workload is distributed across clients, while the network state is
coordinated through a high-performance cloud backend which Unity provides.

 — Multiplayer Services SDK: This SDK is a one-stop solution for adding multiplayer
elements to a game developed in Unity 6. The Unity Gaming Services (UGS) Multiplayer
services like Relay, Matchmaker, and more, powers these capabilities to define how
groups of players interact in your games through Sessions, which work with either the
Netcode for GameObjects or the Netcode for Entities networking libraries.

Check out these resources to learn more about Unity 6 multiplayer solutions:

 — Unite 2024: Accelerating the creation of the your competitive multiplayer game

 — Unite 2024: Going multiplayer: How to help your studio and game thrive

 — Unity Manual: New in Multiplayer in Unity 6

 — Unity 6 is here: See what’s new

Unity’s suite of tools supports the entire multiplayer game development lifecycle, from concept
and prototyping to launch and ongoing operations. Work entirely within the Unity ecosystem
or select the tools and services that best match the needs of your team.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.dedicated-server@1.3/manual/index.html
https://docs.unity.com/ugs/en-us/manual/mps-sdk/manual
https://unity.com/solutions/build-backend#multiplayer
https://www.youtube.com/watch?v=-B8D9edqY1I
https://www.youtube.com/watch?v=UiAhrW8i7oA
https://docs.unity3d.com/Manual/WhatsNewUnity6.html#multiplayer
https://unity.com/blog/unity-6-features-announcement

© 2024 Unity Technologies 9 of 91 | unity.com

Basic concepts

In multiplayer gaming, networking enables players to connect to a central server or directly
to each other. This allows them to share data and play together in real-time. The same game
application runs simultaneously on each player’s device, and each player’s actions are then
synchronized across the network.

In networked multiplayer, the same game application runs across multiple devices.

https://unity.com/releases/lts

© 2024 Unity Technologies 10 of 91 | unity.com

| The evolution of Unity tools for multiplayer games | Basic concepts | Unity networking solutions |

A typical networked game consists of two main components in its architecture, clients and
servers. Clients are the instances of the game running on players’ devices – PCs, consoles, or
mobile phones. Clients render the game graphics, play the audio, handle user input, and send
updates to the server about the player’s actions.

Servers, on the other hand, manage the game state, the current status of all the elements in
the game. They handle communication between clients and enforce the game’s rules. Servers
can be dedicated, headless machines run by the game developers or they can be player-
hosted, where one of the players also acts as the server.

The server receives inputs from
clients, processes game logic, and
sends updates back to clients.
Although the server is the final
authority on the game state,
clients maintain local copies for
responsive gameplay. Constant
synchronization then keeps the
game as consistent as possible for
all players in real-time.

 The client-server architecture

Headless servers

A headless server is a server that operates without a graphical user interface, focusing
solely on backend tasks.

Because they don’t render graphics, they can scale more easily and are often deployed on
dedicated hardware or cloud environments. For more information, see Dedicated game
server under Network Topologies .

https://unity.com/releases/lts

© 2024 Unity Technologies 11 of 91 | unity.com

| The evolution of Unity tools for multiplayer games | Basic concepts | Unity networking solutions |

UDP packets
Clients and servers communicate by exchanging data packets using standard Internet
protocols like UDP (User Datagram Protocol). In real-time applications, especially fast-paced
games like first-person shooters, UDP is preferred to TCP (Transmission Control Protocol)
because it gives full control to the game to prioritize different aspects of the communication.
Unlike TCP, UDP does not require acknowledgement from the recipient. This makes UDP a
more efficient and flexible foundation but it also puts the burden on the application to handle
cases when such functionality is required.

Each UDP packet consists of a header and a payload. The UTP payload contains additional
protocol-specific sections, each with their own headers and payloads. In networking
terminology, this nesting is known as encapsulation .

The IP and UDP headers are of a
fixed size and contain important
metadata like the address of the
sender and receiver (IP address
and ports). The payload varies
in size, structure, and content,
depending on the specific game
and context. For example, a
payload could carry player inputs
or a snapshot of the game state at
one moment in time.

UDP packets favor low latency and speed, essential for real-time applications; however, this
speed comes with a lack of reliability as a tradeoff. The UDP protocol doesn’t provide any
mechanisms for reliability, ordering, or congestion control. A packet traveling through the
internet could experience errors, including:

 — Packet Loss: Sometimes a packet may get lost and never arrive at its destination. This
could be due to network congestion, faulty hardware, or other issues.

Simplification of a UDP packet

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/User_Datagram_Protocol

© 2024 Unity Technologies 12 of 91 | unity.com

| The evolution of Unity tools for multiplayer games | Basic concepts | Unity networking solutions |

 — Duplication: A packet might be duplicated, resulting in the same packet arriving multiple
times at the receiver. This can happen due to misconfigured network hardware or
software.

 — Reordering: Packets may arrive at the receiver in a different order than they were sent.
This can happen if packets take different routes to the destination that have varying
latencies .

 — Corruption: Packet contents may get altered during transmission, resulting in unusable
data .

UDP versus TCP

A network protocol is a set of rules and conventions that govern how data is transmitted
and received over a network. Protocols define how to establish connections, format
messages, handle errors, and transmit data.

UDP is typically preferred over Transmission Control Protocol (TCP) in game development
due to its fast and lightweight nature. TCP, while reliable and suitable for web browsing,
ensures ordered data delivery by retransmitting lost or out-of-order packets; this can
introduce lag or stutter that don’t make it suitable for real-time gaming.

In contrast, UDP accepts some data loss to prioritize real-time performance. This means
that games can run smoothly at 60 fps or higher without freezing, even if dropping some
non-critical data. UDP usually strikes a better balance between responsiveness and
occasional data loss, making it ideal for networked multiplayer games.

The following techniques can mitigate UDP’s unreliability. Unlike the built-in functionality in
TCP, they can be fine-tuned for use in real-time games.

Technique What it does

Sequence numbers Each packet has a unique, increasing sequence
number. The receiver uses this to detect missing or
out-of-order packets.

Acknowledgement (ACK) and
ACK bitmasks

Packets include the sequence number of the last
received packet, letting the sender know which
packets have been delivered. An ACK bitmask tracks
the status of multiple packets at once, allowing for
quicker detection of lost packets.

Retransmission timeout
adjustment (RTO)

This is a technique that makes use of measuring
round trip time in TCP approximation. For example,
you can measure the round trip time and then use
it to adjust client-side interpolation or client-side
prediction.

Timeouts If an acknowledgment isn’t received within a certain
period, the packet is considered lost.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Transmission_Control_Protocol

© 2024 Unity Technologies 13 of 91 | unity.com

| The evolution of Unity tools for multiplayer games | Basic concepts | Unity networking solutions |

Ticks and updates
In a multiplayer game, the server handles the core game logic, physics simulations, and other
gameplay functions, even if it doesn’t have a display.

As the server is only handling the global game state, it takes its input from the clients, much
like a single-player game handles inputs from a local player. Instead of having a mouse and
keyboard, the server processes those inputs to maintain the “authoritative game state” – this
includes everything from current player positions and object states to physics calculations and
game progress.

The heart of server-side processing is the server tick. A server tick is a cycle during which
the server updates the game state based on received inputs. This happens at a fixed interval
known as the tick rate, measured in Hertz (Hz) or ticks per second. This tick rate determines
the frequency at which the game world is updated.

Conversely, the update rate refers to how frequently the client exchanges data with the
server. A higher update rate can enhance the responsiveness of the game but requires more
bandwidth and processing power. It’s typically constrained by the client’s network capabilities
and computing resources.

Tick rate versus update rate

A higher tick rate can improve the game’s responsiveness but may strain server resources.
Similarly, a higher update rate enhances interaction smoothness at the expense of greater
data transmission. Creating a smooth and responsive multiplayer experience hinges on finding

https://unity.com/releases/lts

© 2024 Unity Technologies 14 of 91 | unity.com

| The evolution of Unity tools for multiplayer games | Basic concepts | Unity networking solutions |

the right balance between the tick rate and the update rate.

The actual tick rate can vary based on gameplay needs. A fast-paced first person shooter
often runs at tick rates of 60 Hz or higher to reflect fast player movements and split-second
shots. A real-time strategy game, on the other hand, doesn’t rely on twitch reflexes, so a tick
rate of 30 Hz may be sufficient. Meanwhile, a large-scale strategy MMO might use a fairly low
tick rate of 10 Hz in order to support an extensive number of concurrent players.

Latency
Latency is the time it takes for data to travel from the source to the destination. Round-trip
time (RTT) measures how long it takes for a packet to travel to its destination and return with
a response, providing a gauge of network latency.

While subjective, a general rule of thumb is that users notice gameplay degradation around
200ms of latency. Different types of games can tolerate more or less latency. For example,
first-person shooter games perform best with less than 100ms of latency, whereas real-time
strategy games might allow higher latency values of up to 500 ms.

Round-trip time is a gauge of network latency.

Lower latency produces a responsive experience for the player. Ideally, there is minimal delay
between a user’s action and seeing the expected result in a multiplayer game. High latency
leads to noticeable delays during gameplay.

Sometimes latency results from non-network components. For example, there may be a delay
in detecting user input or a hiccup in the render pipeline. Another culprit is Vsync: Though this
feature can stop screen tearing, it does so at the cost of additional latency.

More often, the network itself is the major source of latency. It can involve several types of
delays:

 — Processing delay: Routers take time to read packet headers and forward packets to their
destination. Though usually minimal, this delay can accumulate across multiple hops.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/QualitySettings-vSyncCount.html

© 2024 Unity Technologies 15 of 91 | unity.com

| The evolution of Unity tools for multiplayer games | Basic concepts | Unity networking solutions |

 — Transmission delay: This is the time required to put packets onto the network, directly
affected by packet size. This is more apparent on end-user networks with lower
bandwidth.

 — Queueing delay: When packets are held in queues due to congestion or limited interface
capacity, this delay can significantly increase latency.

 — Propagation delay: Signals take time to travel across the network. This type of delay
results primarily from the physical distance between servers and users, the physical
media (fiber, copper, air) and type of signal (electrical, optical, radio wave).

While some latency is unavoidable, especially in internet-based games, there are many
techniques (e.g., anticipation, prediction, interpolation) to minimize its impact. We’ll examine a
few of these later.

Other networking terms

Here are some other terms that you may encounter when discussing latency:

Ping: This involves sending and receiving back a basic message to gauge network
responsiveness. Think of it as a simplified version of Round Trip Time (RTT).

Jitter: This is the variation in RTT due to fluctuating network conditions, which can affect
latency mitigation and cause packets to arrive out of order.

Bandwidth: This is the amount of data that can be transmitted over a network in a given
amount of time. Higher bandwidth can be important for games that need to transmit large
amounts of state data.

You can find these terms and more in this glossary page of Multiplayer Networking
Terminology .

Network synchronization
To stay in sync, clients and the server continuously exchange messages in order to maintain a
consistent game state across all players. Typically, clients usually send user commands to the
server at a high frequency – often at 60 Hz, or about every 16 milliseconds. These commands
might be actions or inputs; for example, mouse or gamepad movements or button presses for
jumping and shooting.

Once the server receives and processes the client commands, it then sends updates about
the game world back to the clients. The faster the game reacts to player input, the more
responsive it feels.

Just bear in mind that the server’s tick rate, the client’s update rate, and the client’s frame rate
serve different purposes and don’t need to match. In fact, achieving perfect synchronization is
uncommon. A server and its clients are constantly in flux, exchanging a continuous stream of
dynamic data. The objective is to reduce their discrepancies, thereby creating the illusion that
all clients are playing in unison.

https://unity.com/releases/lts
https://docs-multiplayer.unity3d.com/netcode/current/advanced-topics/client-anticipation/
https://docs.unity3d.com/Packages/com.unity.netcode@1.2/manual/prediction.html
https://docs-multiplayer.unity3d.com/netcode/current/learn/clientside_interpolation/
https://docs-multiplayer.unity3d.com/netcode/current/terms-concepts/mtt-terms/
https://docs-multiplayer.unity3d.com/netcode/current/terms-concepts/mtt-terms/

© 2024 Unity Technologies 16 of 91 | unity.com

| The evolution of Unity tools for multiplayer games | Basic concepts | Unity networking solutions |

Techniques for network synchronization

State synchronization involves the periodic transmission of the state of network objects from
the server to the clients. How frequently these game updates happen can vary based on the
specific needs of the game genre (e.g. a competitive shooter versus a co-op strategy game).

Remote procedure calls (RPCs) invoke functions on the server or other clients remotely. Use
RPCs for client-to-server communication, such as sending player inputs, requesting specific
actions, or triggering one-time game events.

Bandwidth management can significantly impact performance. Synchronization consumes
bandwidth, so implement strategies like the following to reduce data transmission over the
network:

 — Data culling: This reduces network traffic by excluding non-essential updates, focusing
only on what is necessary for gameplay. For instance, you can sync only critical axes
of movement or trigger VFX and animations locally using events instead of continuously
synchronizing them. Any reduction in network traffic can enhance game performance.

 — Delta compression: This also goes by the term delta encoding. It allows the server
to send only the changes (deltas) since the last update. Clients then apply only these
deltas to their local game state to keep it in sync with the server.

 — Interest management: This prioritizes data synchronization based on several criteria.
Spatial relevance determines the priority of objects based on their distance from the
player and their visibility. Age (or staleness) prioritizes objects or data that haven’t been
transmitted recently, making them higher-priority until updated. Interaction focuses on
objects that have recently interacted with the player or are likely to do so soon.

These techniques can help you optimize network performance, ensuring a smoother and more
efficient gameplay experience.

Network topologies
Simply put, a network topology defines how devices are connected and communicate in a
multiplayer environment. Each network model has its own advantages and disadvantages.
Choosing one depends on the type of game, the desired level of control over the game state,
and the resources available for server infrastructure.

Topologies can impact the game’s architecture, performance, and the overall player
experience. Netcode for GameObjects supports two primary topologies: client-server and
distributed authority. Let’s unpack what that means.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Delta_encoding
https://docs-multiplayer.unity3d.com/netcode/current/terms-concepts/mtt-terms/#spatial-relevance
https://docs-multiplayer.unity3d.com/netcode/current/terms-concepts/mtt-terms/#age-staleness
https://docs-multiplayer.unity3d.com/netcode/current/terms-concepts/mtt-terms/#interaction
https://docs-multiplayer.unity3d.com/netcode/current/tutorials/get-started-ngo/
https://docs-multiplayer.unity3d.com/netcode/current/learn/distributed-authority-quick-start/

© 2024 Unity Technologies 17 of 91 | unity.com

| The evolution of Unity tools for multiplayer games | Basic concepts | Unity networking solutions |

Client-server topology

The client-server topology is a common network model that divides responsibilities between
client devices and a central server to optimize performance and manage the game effectively.

A client represents a player’s game instance, handling local inputs, rendering, and partial
simulation of the game state. Clients send local inputs like character movements to the server
and receive updates in return .

The server maintains the definitive, accurate representation of the game world, processing
player inputs and enforcing game rules. This central server resolves conflicts and validates
actions, ensuring a consistent and fair experience for all players. This setup also helps prevent
cheating by controlling game state centrally.

Clients and servers can communicate with each other over the internet or a local area network
(LAN). Offline LAN games connect multiple devices within the same physical vicinity through a
local network without needing internet access. This setup bypasses the internet and ensures
minimal latency, high security, and reliable connectivity due to the close proximity of the
devices. This makes it suitable for LAN parties, esports tournaments, and environments where
the internet is unstable.

There are two types of servers within the client-server topology:

Dedicated game server
A dedicated game server is a separate entity that only processes data and doesn’t participate
as a player. It can offer the highest performance while handling all major simulations and
player interactions in networked games.

Dedicated servers are integral for games
where minimizing cheating is paramount.
However, this setup can introduce
communication latency as all player
state changes need to be processed by
the server before being relayed to other
clients .

Dedicated servers are particularly
well-suited for performance-sensitive,
competitive games such as first-person
shooters. They can be essential to
maintaining fairness and reducing
disruptive behavior.

A dedicated game server handles all major game simulations.

https://unity.com/releases/lts

© 2024 Unity Technologies 18 of 91 | unity.com

| The evolution of Unity tools for multiplayer games | Basic concepts | Unity networking solutions |

Client-hosted listen server
A client-hosted listen server acts as both server and client, allowing the host to play the
game. This can help reduce costs but gives the host a latency advantage (since no packets
need to be sent across the network).

This setup often results in degraded
server performance since the same
machine is tasked with running the game
server and generating the visual output
for the host player. Also, because the
hosting client services connections via
a residential internet connection, it can
be slower than using a dedicated server
in a remote data center. This is because
residential internet service providers
typically prioritize download performance
over upload performance.

A client-hosted listen server acts as both a server and client.

Distributed authority

The distributed authority network model decentralizes control and management of game
state among all participating clients. Each client is responsible for owning, tracking, and
managing a portion of the state of objects within the game, with the ability to spawn and
manage these objects autonomously.

A central, lightweight service monitors changes in object states and manages the routing of
network traffic, but it does not simulate the game itself.

This topology offers several benefits, including reduced costs and lower input latency, as
it eliminates the need for a central server to process all game actions and reduces network
round-trips since each client is authoritative over its own objects. For example, that means
it can handle actions like movement, attacks, or other game inputs locally without waiting
for permission from a server. This results in more immediate feedback for the player, which
in turn makes the game feel more responsive. However, it also can be subject to increased
vulnerability to cheating as there’s no single authoritative server to validate all actions.

Distributed authority is less suitable for games requiring precise simulations or high
competitiveness but works well for games with less critical interaction needs.

https://unity.com/releases/lts

© 2024 Unity Technologies 19 of 91 | unity.com

| The evolution of Unity tools for multiplayer games | Basic concepts | Unity networking solutions |

You can learn more about Unity’s new
Distributed Authority package (beta) for
Netcode for GameObjects in this Unite 2024
session .

The distributed authority model decentralizes control and game management.

Local or couch multiplayer

Local multiplayer games use a single client runtime instance that can be played by two or
more people on the same screen in the same physical location. This setup is ideal for social
gaming scenarios, offering direct interaction among players without any need for networking.
It’s popular in party games and co-op modes, providing a straightforward way for friends and
family to play together.

Peer-to-peer (P2P)

Each device functions as both client and server, allowing for direct connections between
players. This resembles distributed authority but disposes of the lightweight server altogether.
This method helps reduce the need for centralized servers, lowering costs and complexity.
However, it can introduce challenges in ensuring fairness and consistent latency, as there is no
central authority to manage game state and security.

What is an authoritative server?

An authoritative server refers to a server setup that is the central controller of game
states and logic. As the name implies, it’s the final authority in a networked game.

Rather than splitting authority of what is happening in the game across the player
machines, an authoritative server runs the full game simulation itself and dictates what is
happening in the game. Clients simply send their inputs to the server, which then updates
the game and sends back the latest game state.

The server also enforces game rules and resolves conflicts. Authoritative servers are
one of the simplest ways to implement networked game logic and the one least prone to
exploitation by cheaters, ensuring a uniform experience for everyone playing the game .

https://unity.com/releases/lts
https://www.youtube.com/watch?v=3jBOTk_qozA
https://www.youtube.com/watch?v=3jBOTk_qozA

© 2024 Unity Technologies 20 of 91 | unity.com

| The evolution of Unity tools for multiplayer games | Basic concepts | Unity networking solutions |

Network stack
A protocol stack, or network stack, is generally speaking software that implements various
communication protocols to enable data transmission across networks. It’s organized like a
layered cake:

The Network stack (source: Wikipedia)

Each layer only interacts with the layers directly above and below it, providing modularity and
simplifying network management.

Application layer: The high-level of the stack where most Unity development takes
place. Packages like Netcode for GameObjects or Netcode for Entities abstract away the
complexities of lower-level networking, allowing developers to focus on implementing
multiplayer functionality.

Transport layer: The transport layer is responsible for providing reliable data transfer, error
detection and correction, flow control, and ensuring end-to-end communication between
devices in a network. It facilitates the segmentation and reassembly of data packets and
provides mechanisms for error recovery and data integrity.

Network layer: The network layer is responsible for routing data packets between networked
devices across different networks. It relies on the network infrastructure and protocols, such
as IP (Internet Protocol), to handle communication.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Protocol_stack
https://en.wikipedia.org/wiki/Protocol_stack

© 2024 Unity Technologies 21 of 91 | unity.com

| The evolution of Unity tools for multiplayer games | Basic concepts | Unity networking solutions |

Data link and physical layers: These layers directly handle physical transmission of data
packets over the network medium, such as Ethernet or Wi-Fi. The data link layer and physical
layers are typically handled by the operating system and network hardware.

As a Unity developer, you’ll primarily work with the high-level application layer to implement
multiplayer features, such as synchronizing GameObjects, managing game state, and handling
player interactions.

Generally, you won’t need to worry about the lower layers unless your application has specific
requirements. This simplifies the network stack to something that looks like this:

Netcode development layers

https://unity.com/releases/lts

© 2024 Unity Technologies 22 of 91 | unity.com

Unity networking
solutions

Unity provides comprehensive solutions for developing multiplayer games across various
genres and scales. Selecting the right netcode solution is crucial because different game
types have specific networking demands.

Consider several factors here, including the game genre, scale, level of competitiveness, and
the desired control over the networking layer. Casual games often prioritize simplicity and
cost-effectiveness, while competitive games require precise and robust network management
to ensure fairness and responsiveness.

Whether you are building a casual cooperative game or a competitive action title, Unity offers
powerful netcode packages and complementary services to meet your needs.

Netcode for GameObjects
For casual cooperative multiplayer games, Unity recommends using the Netcode for
GameObjects (NGO) package. This high-level solution simplifies developing multiplayer games
by abstracting networking logic, making it easier to manage the game state for all players.

If you’re just getting started with multiplayer development, NGO serves as an excellent starting
point.

Netcode for GameObjects includes a few key features:

 — NetworkObject: This represents any object in the game that should be synchronized
over the network. It handles object spawning, despawning, and ownership.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.netcode.gameobjects@2.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.netcode.gameobjects@2.1/manual/index.html

© 2024 Unity Technologies 23 of 91 | unity.com

| Basic concepts | Unity networking solutions | Setting up your first Netcode project |

 — NetworkBehaviour: This is a specialized MonoBehaviour that provides networking
capabilities. It offers built-in callbacks for handling network events and allows you to
write server-side and client-side code.

 — Remote procedure calls (RPCs): These send messages and invoke methods on remote
instances of your GameObjects using Server and Client RPCs.

 — NetworkVariable: This is a class that allows you to sync states across the network.

 — NetworkManager: This is a central component that manages the network state of your
game, handling tasks such as connection, disconnection, and scene management.

These components work at the application layer to help you implement multiplayer
functionality. Netcode for GameObjects is designed to be simple yet powerful, providing the
tools needed to create robust and scalable multiplayer games.

Netcode for Entities
Built on top of Unity’s Data-Oriented Technology Stack (DOTS) and the Entity Component
System (ECS), Netcode for Entities is designed for server-authoritative gameplay. It includes
advanced features like client-side prediction, interpolation, and lag compensation.

In this setup, a centralized server handles all game simulations, reducing cheating by
controlling game outcomes. Clients send inputs to the server, which processes these inputs
and sends back the updated game state, minimizing potential manipulation.

Netcode for Entities includes client-side prediction to mitigate latency, creating a smoother,
near zero-lag experience. Compared to Netcode for GameObjects, it offers better scalability
and bandwidth optimization.

If you’re an experienced multiplayer developer with a project that requires a high degree of
performance and determinism, DOTS and ECS might be the right base for your game.

To learn more about data-oriented design in Unity read our DOTS e-book and reference this
DOTS resources list .

The Unity sample ECS Network Racing is built with Netcode for Entities.

https://unity.com/releases/lts
https://docs-multiplayer.unity3d.com/netcode/current/basics/networkvariable/index.html#docusaurus_skipToContent_fallback
https://docs-multiplayer.unity3d.com/netcode/current/basics/networkvariable/index.html#docusaurus_skipToContent_fallback
https://docs-multiplayer.unity3d.com/netcode/current/components/networkmanager/
https://blog.unity.com/engine-platform/new-ebook-understanding-unity-dots
https://docs.unity3d.com/Packages/com.unity.netcode@1.4/manual/index.html
https://blog.unity.com/engine-platform/new-ebook-understanding-unity-dots
https://blog.unity.com/engine-platform/dots-bootcamp-resources

© 2024 Unity Technologies 24 of 91 | unity.com

| Basic concepts | Unity networking solutions | Setting up your first Netcode project |

Choosing the right Netcode solution depends on your project’s requirements and your team’s
expertise. You can start by using the table below to help inform your decision.

Feature Netcode for GameObjects Netcode for Entities

Target audience Beginners and intermediate developers Advanced developers

Architecture Object-oriented (MonoBehaviour-based)
Data-oriented (Entity
Component System -
ECS and DOTS)

Performance Suitable for smaller scale games
Optimized for high
performance and
scalability

Scalability Limited, ideal for a small number of players
High, designed for
large-scale games

Networking
features

NetworkVariables, RPCs, NetworkTransform,
limited client-side prediction (anticipation),
interpolation, supports UnityTransport

Full featured client-
side prediction,
interpolation, lag
compensation,
supports optimized
UnityTransport

Unity Services
Integration

Full support for Lobby, Relay, etc.
Full support for Lobby,
Relay, etc.

Sample projects Boss Room, Bite Size Samples
Megacity Metro, ECS
Racing, Netcode
Samples

Another great resource is Unity Multiplayer Center. The Multiplayer Center provides a starting
point to create a multiplayer game. It recommends Unity multiplayer packages based on the
needs of your game, and gives you access to samples and tutorials to help you use them. See
the Multiplayer Center documentation for instructions on how to get and set up the package in
your project.

Unity Transport
The Unity Transport Package is a netcode-agnostic library that provides a low-level network
layer focused on performance and reliability – a modern, secure, and portable transport library
that extends the conventional UDP with advanced features:

 — Reliability: Adds reliable communication over UDP, ensuring critical messages are
delivered without the overhead of TCP

 — Security: Incorporates encryption and authentication to protect data from unauthorized
access

https://unity.com/releases/lts
https://unity.com/demos/small-scale-coop-sample
https://github.com/Unity-Technologies/com.unity.multiplayer.samples.bitesize/tree/main
https://unity.com/demos/megacity-competitive-action-sample
https://github.com/Unity-Technologies/ECS-Network-Racing-Sample
https://github.com/Unity-Technologies/ECS-Network-Racing-Sample
https://github.com/Unity-Technologies/EntityComponentSystemSamples/blob/master/NetcodeSamples/README.md
https://github.com/Unity-Technologies/EntityComponentSystemSamples/blob/master/NetcodeSamples/README.md
https://docs.unity3d.com/6000.0/Documentation/Manual/multiplayer-center.html
https://docs.unity3d.com/6000.0/Documentation/Manual/multiplayer-center.html
https://docs.unity3d.com/Packages/com.unity.transport@2.0/manual/index.html

© 2024 Unity Technologies 25 of 91 | unity.com

| Basic concepts | Unity networking solutions | Setting up your first Netcode project |

 — Performance: Optimized for low latency and high throughput

 — Cross-platform compatibility: Designed to work seamlessly across different platforms
and devices

Both Netcode for GameObjects and Netcode for Entities rely by default on Unity Transport.
Developers looking to keep fine-grain control over the network can also use Unity Transport as
a standalone library and build their own customized netcode on top for specific game needs.

Unity Transport now adds WebGL support that can enhance the cross-platform and web
multiplayer experience.

Third-party networking

Though we recommend starting with Netcode for GameObjects, it’s important to
understand it’s not your only option. The Unity community features many different
solutions to fit your specific needs.

Here are some third-party networking options available from the Unity Asset Store:

 — Photon Unity Networking (PUN): Photon offers a comprehensive and scalable
solution suitable for games demanding high concurrent user numbers.

 — Mirror: Known for its simplicity and ease of use, Mirror is a free open-source
networking library originally based on Unity’s UNet.

 — DarkRift Networking 2: This solution provides both high performance and flexibility
and is tailored for developers looking for detailed control over their networking.

 — Forge Networking Remastered: This is an open-source option that allows for
advanced customization and control.

https://unity.com/releases/lts
https://assetstore.unity.com/packages/tools/network/photon-unity-networking-classic-free-1786
https://assetstore.unity.com/packages/tools/network/photon-unity-networking-classic-free-1786
https://assetstore.unity.com/packages/tools/network/mirror-129321
https://assetstore.unity.com/packages/tools/network/darkrift-networking-2-95309
https://assetstore.unity.com/packages/tools/network/forge-networking-remastered-38344

© 2024 Unity Technologies 26 of 91 | unity.com

Setting up your first
Netcode project

If you haven’t already tried Unity’s networking solutions, setting up a basic Netcode project
involves importing the necessary networking packages and then configuring the necessary
multiplayer components.

This chapter will walk through your first steps to add networking to a sample project using
Netcode for GameObjects. Remember that in Unity 6 you can use Multiplayer Center to set
up a new multiplayer project, and Multiplayer Widgets for integrating additional Unity services
into the project.

Before you begin
Make sure you have the following:

 — An active Unity account with a valid license

 — The Unity Hub

 — A supported version of the Unity Editor; some features demonstrated here require
Unity 6 or higher, refer to the Netcode for GameObjects requirements

 — A connection to the Unity Cloud dashboard to connect to the Unity services your
project will need; you can do this via the Unity Hub

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/multiplayer-center.html
https://docs.unity3d.com/Packages/com.unity.multiplayer.widgets@1.0/manual/get-started-learn-widgets.html
https://unity.com/download
https://docs-multiplayer.unity3d.com/netcode/current/installation

© 2024 Unity Technologies 27 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

Sample project setup
It’s helpful to demo these netcode tools on an existing project with single-player locomotion. In
this guide, we’ll use the Starter Assets – ThirdPerson package from the Unity Asset Store. This
simulates simple 3D gameplay with a humanoid character using the Universal Render Pipeline
(URP).

Get this free asset from the Unity Asset Store and then import it using the Package Manager.

The Starter Assets package from the Asset Store

This demo project includes a small testing playground scene and a configurable third-person
controller. The goal is to run multiple copies of this application and then have different clients
interact in the same environment.

https://unity.com/releases/lts
https://assetstore.unity.com/packages/essentials/starter-assets-thirdperson-updates-in-new-charactercontroller-pa-196526

© 2024 Unity Technologies 28 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

Installing Netcode for GameObjects
In the Package Manager (Window > Package Manager), filter for the Unity Registry. Then
install the following packages:

 — Netcode for GameObjects: This is a foundational networking library that adds
multiplayer capabilities to the existing GameObject/MonoBehaviour workflow. It
streamlines multiplayer game development and is a great starting point for working with
networked multiplayer.

 — Multiplayer Tools Window: This is an extra suite of five new tools introduced in Unity 6
that improve workflows for multiplayer development:

 — The Multiplayer Tools Window provides convenient access to all of the multiplayer
tools and their documentation in one place.

 — The Network Simulator replicates real-world network conditions, such as packet
delay, loss, and disconnections to identify potential issues before going live.

 — The Runtime Network Stats Monitor (RNSM) displays real-time network statistics,
providing configurable onscreen monitoring of network performance.

 — Network Scene Visualization enhances debugging by visually displaying network
activity and object ownership in the scene view.

 — The Hierarchy Network Debug view provides an overlay on the right-hand side of
your Hierarchy window that identifies which objects are networked (with a small
network cube logo).

 — Multiplayer Play Mode: This Unity 6 package enables you to test multiplayer functionality
without leaving the Unity Editor. You can simulate up to four players (the Main Editor
Player plus three Virtual Players) for faster playtesting.

Install Netcode for GameObjects and its supporting packages.

https://unity.com/releases/lts
https://docs-multiplayer.unity3d.com/tools/current/multiplayer-tools-window/
https://docs-multiplayer.unity3d.com/tools/current/tools-network-simulator/
https://docs-multiplayer.unity3d.com/tools/current/RNSM/
https://docs-multiplayer.unity3d.com/tools/current/netscenevis/
https://docs-multiplayer.unity3d.com/tools/current/hierarchy-network-debug/
https://docs-multiplayer.unity3d.com/mppm/current/about/

© 2024 Unity Technologies 29 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

Adding the NetworkManager
Every project will need a NetworkManager component to support networked multiplayer. This
essential component manages the network state of your project, handling connections and
network configurations.

To add a NetworkManager to your scene, create a new GameObject in the Hierarchy and add
the NetworkManager component (Netcode > NetworkManager).

In the NetworkManager component, configure the Network Transport layer. Choose Unity
Transport.

Select a transport layer in the NetworkManager.

This attaches a UnityTransport component to the GameObject. The transport layer
is responsible for low-level networking tasks, such as connection management, data
transmission, and packet encryption.

The UnityTransport component

https://unity.com/releases/lts

© 2024 Unity Technologies 30 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

Though you don’t need to modify these settings yet, this component can help simulate
network conditions (e.g., latency, packet loss, and jitter) for testing and debugging in the
Editor.

Save the scene and go to File > Build Settings and make sure your current scene is added to
the Scenes in Build list. This ensures the new NetworkManager is included in the game build.

NetworkObjects
NetworkObject is a required component for any GameObject that needs to be networked or
synchronized across different clients in a multiplayer game. When you add a NetworkObject
component to a GameObject, it becomes “networkable,” meaning that its state and behavior
can be shared and updated across the network.

The NetworkObject component and its unique ID

Each NetworkObject has a few identifiers:

 — The GlobalObjectIdHash identifies the prefab asset in the project.

 — The NetworkObjectId is the unique identifier that differentiates instances of the same
prefab asset.

 — The OwnerClientId represents the client that “owns” the object (see Authority below).

These identifiers help the NetworkManager keep track of it and ensure that its state is
consistent across all connected clients. NetworkObjects can be dynamically created
(spawned) or destroyed during gameplay.

Spawning a NetworkObject makes it appear on all connected clients. Each NetworkObject has
an owner, typically the client that controls its behavior and state.

https://unity.com/releases/lts
https://docs-multiplayer.unity3d.com/netcode/current/basics/networkobject/

© 2024 Unity Technologies 31 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

Player NetworkObjects
Each player can optionally have their own prefab called a Player NetworkObject. This is
a special type of NetworkObject that often contains the character controller and visual
representation of the player in the game.

The Player NetworkObject in the sample project

Player NetworkObjects often store and sync player-specific data, such as the player’s name,
score, inventory, or other relevant information. This data is synchronized across the network
to ensure that all connected players have a consistent view of the game state.

When a client connects, the NetworkManager creates a Player NetworkObject that is “owned”
by the corresponding player. This means that the player has authority over their PlayerObject
and can control its behavior and state.

To set up a Player NetworkObject, start by creating a standard prefab GameObject in your
project. This prefab acts as a template for the PlayerObject, containing the necessary
components and scripts that define the player’s behavior and appearance.

https://unity.com/releases/lts
https://docs-multiplayer.unity3d.com/netcode/current/basics/networkobject/#player-networkobjects

© 2024 Unity Technologies 32 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

Then, add the appropriate netcode components. These might include:

 — NetworkObject: Every object that will be networkable needs a NetworkObject
component. This contains properties and events related to spawning, despawning, and
ownership.

 — NetworkBehaviours: These scripts add networking behavior to their MonoBehaviour
base class. NetworkBehaviours contain network variables, remote procedure calls
(RPCs), and network callbacks.

 — NetworkAnimators: This component syncs animation states and parameters between
clients .

 — NetworkTransform: This component ensures that the player’s position, rotation, and
scale are replicated in real-time from the server to all connected clients.

Player NetworkObjects are often responsible for handling player input. When a player performs
an action, such as moving or interacting with the game world, the input is processed and then
propagated to other connected players as needed.

Player logic involves a combination of MonoBehaviours for direct game mechanics and
NetworkBehaviours for managing network states. Non-networked components, such as
character controllers and animators, function normally on each player’s local instance.

Using these components locally not only optimizes performance but also reduces network
traffic, which can be important when working with limited bandwidth between your clients.

Creating a Player NetworkObject
Load up the Playground scene from the sample project.

The Starter Assets bundle includes a Playground scene.

https://unity.com/releases/lts

© 2024 Unity Technologies 33 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

The Hierarchy includes a PlayerArmature that drives the game character. To convert this into
a Player NetworkObject, drag it from the Hierarchy to create a new Original Prefab or modify a
copy of the existing prefab in the project.

In the Hierarchy window, locate the PlayerArmature GameObject. Delete it to remove the
PlayerArmature and its child objects from the scene, leaving only the game environment in the
scene .

Then, edit the prefab in the Inspector. Add the NetworkObject component. This component is
required for the object to be recognized and managed across the network.

Add the NetworkObject to the prefab.

Register the Player NetworkObject in the Player Prefab field of the NetworkManager.

Register the Player NetworkObject in the NetworkManager.

https://unity.com/releases/lts

© 2024 Unity Technologies 34 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

Play mode only shows the game environment. The Player NetworkObject will only appear
when a client connects.

Select the NetworkManager, which now appears under DontDestroyOnLoad in the Hierarchy.

Start the host on the NetworkManager.

Select Start Host. This spawns the Player NetworkedObject.

The PlayerArmature_Network object appears in the Hierarchy. The game is playable once
again (though the camera target is disabled). Use the WASD controls to test the player
movement.

Exit Play mode and the player character disappears. The NetworkManager now spawns and
manages this specific player character at runtime.

Keep in mind that the networked aspect of the game won’t be apparent until you have multiple
clients connected. We’ll need to test with several clients to understand how this works in a
multiplayer scene.

https://unity.com/releases/lts

© 2024 Unity Technologies 35 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

Multiplayer Play Mode
Testing multiplayer requires running the application across separate runtime processes.
Previously, this involved making a separate game build and running it alongside the Unity
Editor.

While you still have that option, Unity 6 includes Multiplayer Play Mode (MPPM). MPPM
enables developers to open multiple instances of the Unity Editor simultaneously, replicating a
multiplayer environment. This streamlines the multiplayer testing process.

Install Multiplayer Play Mode via the Package Manager. Then, you won’t need to build the
application every time you need to test a new feature.

Open Multiplayer Play Mode (Window > Multiplayer Play Mode).

The Multiplayer Play Mode window

Then, check at least one additional Virtual Player from the list in the above screenshot, so
you can test a minimum of one host and client. Remember that the host is a client that is also
running on the server.

When entering Play mode, a second session of the application starts running in a cloned
window.

https://unity.com/releases/lts

© 2024 Unity Technologies 36 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

Multiplayer Player Mode clones a Virtual Player.

Select the NetworkManager in the Hierarchy. Under Start Connection in the Inspector, select
Start Host. The PlayerArmature_Networked object appears in the Game view.

Use the Layout button in the second window to enable the Inspector and Hierarchy – much
like a second session of the Editor. Select the user interface components to enable and press
Apply .

https://unity.com/releases/lts

© 2024 Unity Technologies 37 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

Enable the Layouts in the cloned window.

In the cloned Editor window, locate the NetworkManager under DontDestroyOnLoad in the
Hierarchy.

In the Inspector pane, under Start Connection, select Start Client .

The NetworkManager contains buttons to connect the client.

https://unity.com/releases/lts

© 2024 Unity Technologies 38 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

Two instances of PlayerArmature_Networked now appear in the Hierarchy. In the Scene view,
they appear on top of one another. Using the keyboard or gamepad, move one player instance
away from the other to separate them.

Select a PlayerArmature_Networked instance in the Hierarchy to inspect its NetworkObject
component.

At runtime, note how each instance is identified by its GlobalObjectIdHash (project asset ID)
together with its NetworkObjectId (unique instance index). Below that, the OwnerClientId
indicates whether the host or the client controls the instance.

Switch between the two instances to compare the flags: IsSpawned, IsLocalPlayer, IsOwner,
IsOwnerByServer, etc.

Compare the NetworkObject settings between the two instances.

Use the Network Visualization panel to distinguish between the two instances more clearly.
This handy diagnostic tool appears in the Scene view once you’ve installed the Multiplayer
Tools package.

The two instances are color coded by Bandwidth (how much data is being transmitted) or
Ownership (which client has authority over the Player NetworkObject).

https://unity.com/releases/lts

© 2024 Unity Technologies 39 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

Network Visualization helps to debug the network objects.

Though the NetworkManager creates separate instances for each client, each independently
controls the same character. In the Scene view, the character movements driven by WASD
controls are not synchronized between the client and host.

Although the NetworkManager initially synchronizes their positions at coordinates (0, 0, 0)
when players first connect, their subsequent movements are not. Currently several local
components drive the character’s behavior:

 — A CharacterController allows for the player to move while interacting with the game
environment, without requiring complex physics calculations.

 — An Animator enables animation based on a state machine. The Animator controls the
transitions and blending between running, jumping, or idle states.

 — PlayerInput handles per-player input management, device pairing, and event
notifications, providing a high-level wrapper around the Unity Input System.

 — StarterAssetsInputs translates that input into values for the character’s movement,
look, jump, and sprint inputs.

These are single-player components. To make these work in a multiplayer application, we need
to add some networked scripting.

https://unity.com/releases/lts

© 2024 Unity Technologies 40 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

Creating your own UI start buttons

To create a more user-friendly way to start network sessions at runtime, you can add
onscreen buttons that replicate the functionality of the NetworkManager’s Inspector
buttons. This can be achieved using either Unity UI (UGUI) or UI Toolkit.

In your UI of choice, create three buttons labeled Client, Host, and Server. Then, have
them invoke these respective callbacks from the NetworkManager singleton:

 — NetworkManager.Singleton.StartClient

 — NetworkManager.Singleton.StartHost

 — NetworkManager.Singleton.StartServer

These callbacks allow you to start the network session without using the buttons from the
Inspector window.

Adding NetworkBehaviour
To manage the MonoBehaviours on the PlayerArmature_Networked, we can use a
NetworkBehaviour.

A NetworkBehaviour is a specialized type of MonoBehaviour, designed for networked logic. It
provides the framework necessary for synchronizing actions and states across different game
clients .

NetworkBehaviour shares the same lifecycle events as MonoBehaviours but also
incorporates several network-specific features:

RPC Methods: NetworkBehaviours can utilize remote procedure calls (RPCs) to handle
communications across the network. These methods are annotated with the [Rpc] attribute .
To send an Rpc to a server or client, call [Rpc(SendTo.Server)] and [Rpc(SendTo.
Client)], respectively.

 — NetworkVariable: This is a specialized variable designed for synchronized state
management across the network. Changes to a NetworkVariable on the server are
automatically propagated to all clients.

 — OnNetworkSpawn and OnNetworkDespawn: These lifecycle methods are triggered
when a NetworkBehaviour is instantiated or destroyed. OnNetworkSpawn is
used for initialization (think of OnEnable or Start except for networked behavior).
OnNetworkDespawn handles cleanup before an object is removed from the network
(e.g., analogous to OnDestroy or OnDisable).

 — Ownership: NetworkBehaviour allows specific clients (or the server) to have ownership
over certain objects. This concept of authority, where either a client or the server can
“own” a NetworkObject, ensures that only designated players should be able to control
or interact with specific objects.

https://unity.com/releases/lts

© 2024 Unity Technologies 41 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

We can implement a NetworkBehaviour called ClientPlayerMove to manage the player
movement. This can make sure that input from the host and the client only works on their
respective player objects. Here’s the example setup:

using Unity.Netcode;
using StarterAssets;
using UnityEngine;
using UnityEngine.InputSystem;
namespace NetcodeDemo
{
 public class ClientPlayerMove: NetworkBehaviour
 {
 [SerializeField]
 CharacterController m_CharacterController;
 [SerializeField]
 ThirdPersonController m_ThirdPersonController;
 [SerializeField]
 PlayerInput m_PlayerInput;

 [SerializeField]
 Transform m_CameraFollow;
 private void Awake()

 {
 m_PlayerInput.enabled = false;
 m_ThirdPersonController.enabled = false;
 m_CharacterController.enabled = false;
 }

 public override void OnNetworkSpawn()
 {
 base.OnNetworkSpawn();
 enabled = IsClient; // Enable if this is a client.
 if (!IsOwner)
 {
 // Disable if this is not the owner
 enabled = false;
 m_PlayerInput.enabled = false;
 m_CharacterController.enabled = false;
 m_ThirdPersonController.enabled = false;
 return;
 }

 // Enable if this is an owner
 m_PlayerInput.enabled = true;
 m_CharacterController.enabled = true;
 m_ThirdPersonController.enabled = true;

 }
 }
}

https://unity.com/releases/lts

© 2024 Unity Technologies 42 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

Add this to the PlayerArmature_Networked prefab. Then fill out the appropriate fields in the
Inspector.

Fill out the ClientPlayerMove fields in the Inspector.

Once this script is applied to the prefab, connect the host and client sessions. When clients
connect to the NetworkManager, certain components of the player object are disabled by default
due to the IsOwner property, which checks if the local player is the owner of the instance.

In the Hierarchy, toggle the selection between the two instances of PlayerArmature_
Networked.

Several components disable themselves if not the owner.

https://unity.com/releases/lts

© 2024 Unity Technologies 43 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

Note how several components (like the PlayerInput) now appear deactivated on player
instances not owned by the respective client. For the host, this setup allows control over one
of the player instances, and for the client, control over the other.

However, though we can control different player instances, their movements are not
synchronized across the network. To make the movement match from host to client, we’ll need
to add additional network components like NetworkTransform .

Authority and ownership properties

By default, the server owns NetworkObjects, although connected and approved clients
can also own NetworkObjects using the SpawnWithOwnership method. Netcode for
GameObjects is server-authoritative, which means that only the server is authorized to
spawn and despawn NetworkObjects.

NetworkBehaviour includes some quick ways to determine the authority and ownership of
an instance:

 — IsClient indicates if the instance is running on a client.

 — IsServer indicates if the instance is running on a server.

 — IsHost indicates if the instance is running on a host, which is both a server and a
client .

 — IsLocalPlayer indicates if the associated NetworkObject is the local player object.

 — IsOwner indicates if the local player owns the object or if the object is the local
player object.

 — IsPlayerObject indicates if the GameObject represents a network player, typically
controlled by a specific client.

 — IsSceneObject indicates if the GameObject is part of the scene by default and not
spawned dynamically during gameplay. A scene object is usually managed by the
server for consistent state across the network.

Inspecting the NetworkObject at runtime shows some of these properties.

The NetworkObject settings

https://unity.com/releases/lts

© 2024 Unity Technologies 44 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

Sync using a NetworkTransform and NetworkAnimator
Though the NetworkBehaviour lets us spawn the same player instance on multiple clients,
synchronizing its movements across the network requires additional components.

Add a NetworkTransform component to the PlayerArmature_Networked prefab. Uncheck any
axes which won’t affect gameplay; in this case, uncheck all scales, as well as x rotation and z
rotation axes. Because synchronization uses bandwidth, it’s essential to minimize syncing any
superfluous data.

In Multiplayer Play Mode, focusing on the host window allows you to move the player using the
controls and watch it sync to the client. This demonstrates the beginning of networked play.

Next add the NetworkAnimator component to the PlayerAramature_Networked. Drag the
existing Animator component into the empty field.

Add a NetworkTransform and NetworkAnimator component.

https://unity.com/releases/lts

© 2024 Unity Technologies 45 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

The client window represents a second machine that is connected to the host. Ideally, any
actions performed on the host are reflected on the client and vice versa.

The NetworkTransform allows you to sync the position, rotation, and scale of a Transform,
while the NetworkAnimator syncs the animation states. Now when your host player runs around
the playground environment, its movements transfer to the client in Multiplayer Play Mode.

However, not everything works as expected. Switch focus to the client window and try using
the controls. While the host syncs correctly to the client, the client’s movements may not
reflect on the host.

The player appears to run in place.

The client receives input, as indicated by the character animating in place, but the player
instance doesn’t move. This happens because the NetworkTransform operates under server
authority, syncing only the server’s position to the client.

When you try to move the player on the client, the server overrides the client’s desired
position, resetting it to (0, 0, 0).

https://unity.com/releases/lts

© 2024 Unity Technologies 46 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

Applying client authority
By default, NetworkTransform operates in server authoritative mode. Changes to the
transform axis are detected on the server-side and pushed to connected clients.

In our example, trying to transform the player on the client fails because the server – maintaining
an authoritative state with the transform set to (0,0,0) – overrides these client-side changes.

Server authority overrides the client.

To resolve this, one approach is to transfer authority from the server to the client. This allows
the client to control its own transform without being overridden by the server.

To implement this behavior, we can create a ClientNetworkTransform component, as seen in
the following code example, that switches the server authority for owner authority:

using Unity.Netcode.Components;
using UnityEngine;
namespace NetcodeDemo
{
 [DisallowMultipleComponent]
 public class ClientNetworkTransform : NetworkTransform
 {
 protected override bool OnIsServerAuthoritative()
 {
 return false;
 }
 }
}

https://unity.com/releases/lts

© 2024 Unity Technologies 47 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

Replace the NetworkAnimator with the ClientNetworkAnimator. Remember to set the
Animator field in the Inspector.

The ClientNetworkTransform and ClientNetworkAnimator.

This overrides the OnIsServerAuthoritative method and returns false. On
the Player NetworkObject prefab, replace the NetworkTransform with the custom
ClientNetworkTransform.

Similarly, we can also create a client-driven NetworkAnimator:

using Unity.Netcode.Components;
using UnityEngine;
namespace NetcodeDemo
{
 [DisallowMultipleComponent]
 public class ClientNetworkAnimator: NetworkAnimator
 {
 protected override bool OnIsServerAuthoritative()
 {
 return false;
 }
 }
}

https://unity.com/releases/lts

© 2024 Unity Technologies 48 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

In Multiplayer Play Mode, you can now move the player from the client and its position and
animation states should sync properly to the host.

Client-driven behaviors are also a way to reduce latency in networked applications. In “owner
authoritative mode,” networked behaviors can act immediately and responsively. The client
doesn’t need to wait for a packet to make a round trip to the server and back.

However, exercise care when creating such client-driven behaviors: they can improve the user
experience for each player, but also introduce security risks. Owner authoritative mode opens
your application to mods or hacks; in any online competitive game, players will cheat if given
the chance. To prevent this and make your application more secure, opt for server authority.

Owner authoritative mode components

Though you can create the scripts in the above examples yourself, you can also get
prebuilt ClientNetworkTransform and ClientNetworkAnimator components from
the Multiplayer Samples Utilities package in the Unity project, Boss Room. (com.unity.
multiplayer.samples.coop) .

Note that this implementation of the ClientNetworkTransform comes with potential issues:

 — Ownership transfer: Ownership doesn’t always switch smoothly, sometimes causing
objects to jump or even get out of sync.

 — Hierarchical ownership: There’s no support for a ClientNetworkTransform as a
child under a server-managed NetworkTransform.

 — Update rejection: Servers can’t reject updates from clients since the system only
recognizes client ownership, not joint client-server ownership.

 — Object movement at instantiation: The server can’t move an object when it’s first
created under client ownership.

In many cases, the ClientNetworkTransform can be a viable way to handle client
ownership transforms. However, consider these limitations before implementing them as
part of your project.

Syncing with server authority
Though you can allow some client authority for responsive gameplay, some movements can
only be done on the server side. Generally, you should use server authority to prevent any
potential imbalances or unfair advantages that could arise from client-controlled actions.

For instance, allowing clients to choose their spawn locations on the game map could give
them an undue advantage, depending on the layout of the map. Instead, it’s more equitable to
have the server randomly assign them to one of a set of predetermined spawn points.

https://unity.com/releases/lts
https://unity.com/demos/small-scale-coop-sample

© 2024 Unity Technologies 49 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

To manage this, define some objects with some simple visuals and then scatter them where
you want players potentially to spawn.

Spawn points are strategically placed throughout the level.

A non-networked MonoBehaviour can manage them. Here, the ServerPlayerSpawnPoints
class contains a list called m_SpawnPoints that references each spawn point GameObject.

This sample implementation also uses a generic singleton pattern, borrowed from the Unity-
made Asset Store project Level up your code with design patterns and SOLID:

public class ServerPlayerSpawnPoints : Singleton<ServerPlayerSpawnPoints>
{
 [SerializeField]
 private List<GameObject> m_SpawnPoints;
 public GameObject GetRandomSpawnPoint()
 {
 if (m_SpawnPoints.Count == 0)
 return null;
 return m_SpawnPoints[Random.Range(0, m_SpawnPoints.Count)];
 }
}

A NetworkBehaviour called ServerPlayerMove can then use the instance of
ServerPlayerSpawnPoints to pick a spawn point at random.

https://unity.com/releases/lts
https://assetstore.unity.com/packages/essentials/tutorial-projects/level-up-your-code-with-design-patterns-and-solid-289616

© 2024 Unity Technologies 50 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

using Unity.Netcode;
using UnityEngine;
[DefaultExecutionOrder(0)] // Execute before ClientNetworkTransform
public class ServerPlayerMove : NetworkBehaviour
{
 public override void OnNetworkSpawn()
 {
 // Only execute on the Server
 if (!IsServer)
 {
 enabled = false;
 return;
 }
 SpawnPlayer();
 base.OnNetworkSpawn();
 }

 // Move to the next available position when spawning
 void SpawnPlayer()
 {
 var spawnPoint = ServerPlayerSpawnPoints.Instance.GetRandomSpawnPoint();
 var spawnPosition = spawnPoint ? spawnPoint.transform.position : Vector3.zero;
 transform.position = spawnPosition;
 }
}

All of the logic happens in OnNetworkSpawn. Every time a client connects, a call to
SpawnPlayer starts the player at a randomly selected spawn. The IsServer check makes
sure that this only happens on the server, which maintains the authoritative game state.

Add the ServerPlayerMove script to the PlayerArmature_Networked prefab. When you
enter Multiplayer Play Mode, each client will connect and spawn at a random point within the
playground environment.

This implementation shows how NetworkBehaviours can interact with elements in the scene
that aren’t network-controlled. Here, it leverages static data and scene objects already set up
in the Hierarchy.

When a client connects, the ServerPlayerMove only needs to retrieve one random spawn
point from the existing gameplay scene. This limits the amount of data transmitted over the
network.

https://unity.com/releases/lts

© 2024 Unity Technologies 51 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

The player appears at a random spawn point.

Some important points:

 — Because the ClientNetworkTransform is owner authoritative, it’s important to disable the
CharacterController component during Awake. Re-enable the CharacterController after
ServerPlayerMove positions the player to prevent it from overriding the calculated
values and resetting to world center.

 — Likewise, fill out the m_SpawnPoints in the Inspector to prevent the players from
spawning at (0,0,0).

 — Set the DefaultExecutionOrder attribute with a lower value to ensure that
ServerPlayerMove executes before ClientPlayerMove. For example, using
[DefaultExecutionOrder(0)] prioritizes ServerPlayerMove, allowing it to run
first.

Our multiplayer project now has the capability of connecting multiple clients to a host. In the
game, third-person player characters are able to spawn at designated positions within the
level and synchronize their movements and animations in real-time.

This synchronization is essential for the multiplayer experience. Components such as
NetworkTransform and NetworkAnimator facilitate this process right out of the box, but for
gameplay, you’ll need to customize your own NetworkBehaviours as well.

https://unity.com/releases/lts

© 2024 Unity Technologies 52 of 91 | unity.com

| Unity networking solutions | Setting up your first Netcode project | Network synchronization |

Next, let’s explore additional methods for synchronizing data and game states across the
network.

Singleton design pattern

A singleton provides a convenient means of accessing a unique instance of a particular
type at runtime. However, singletons can introduce extra dependencies, so be aware of
their drawbacks.

In Netcode for GameObjects, you’ll use singletons every time you refer to the
NetworkManager.Singleton. The sample project also includes an example of a generic
singleton for use with any MonoBehaviour type.

For a deeper understanding of singletons, refer to the e-book Level up your code with
design patterns and SOLID. This guidebook also demonstrates alternative patterns like
events or event channels for object communication in your scene.

Get the free Unity e-book on design patterns. See the Unity best practices hub for all advanced guides for programmers, technical
artists, artists, and designers.

https://unity.com/releases/lts
https://unity.com/resources/design-patterns-solid-ebook
https://unity.com/resources/design-patterns-solid-ebook
https://unity.com/how-to

© 2024 Unity Technologies 53 of 91 | unity.com

Network
synchronization

Network synchronization is essential for maintaining a consistent – and fair – gaming
experience for all players.

You’ve already seen how to synchronize player movements and animations with the Player
NetworkObject using a client-driven model. However, gameplay often involves more than
just the player character. Depending on your game design, your player may need to shoot
projectiles, open doors, or interact with other scene objects. These interactions will need to be
networkable, with their own game states that need to be synced between the clients and the
server .

In this section, we will set up client-server communication for gameplay actions, where the
player may interact with part of the game environment. This involves implementing networked
game states and sending remote procedure calls (RPCs) to and from the server.

Gameplay mechanic
To illustrate server-client communication, let’s recreate a simple game mechanic.

Let’s start by adding Trigger Colliders to the game level that change color when making
contact with a player. They can change one color when one player touches it and another
color when a different player touches it.

In the scene, create a new GameObject (e.g., a cube). Add a BoxCollider component and
enable the IsTrigger option. Create and assign a transparent material to the MeshRenderer
(this example uses the URP/Lit shader). Set its initial color to something neutral like white.

https://unity.com/releases/lts
https://docs-multiplayer.unity3d.com/netcode/current/advanced-topics/messaging-system/

© 2024 Unity Technologies 54 of 91 | unity.com

| Setting up your first Netcode project | Network synchronization | Network latency and performance |

The trigger will receive a networked color value.

Next, we need to add network synchronization. Let’s use NetworkVariables and RPCs to
synchronize the color change across the network.

Define a NetworkVariable
A NetworkVariable is a specialized variable designed for synchronized state management
across the network. Changes to a NetworkVariable on the server propagate to all clients. This
is ideal for continuously synchronized data, such as positions, health points, or in this case,
the color state of the trigger.

We’ll create a NetworkBehaviour called ColorTrigger and attach it to the trigger object. This
script will contain a NetworkVariable called m_NetworkColor that contains a Color value .

using UnityEngine;
using Unity.Netcode;
public class ColorTrigger : NetworkBehaviour
{
 public NetworkVariable<Color> m_NetworkColor = new NetworkVariable<Color>(Color.
white);
 private Material m_InstanceMaterial;

 public override void OnNetworkSpawn()
 {
 m_NetworkColor.OnValueChanged += OnColorChanged;
 MeshRenderer meshRenderer = GetComponent<MeshRenderer>();
 if (meshRenderer != null)
 {
 m_InstanceMaterial = new Material(meshRenderer.material);
 meshRenderer.material = m_InstanceMaterial;
 UpdateMaterialColor(m_NetworkColor.Value);
 }
 }

https://unity.com/releases/lts

© 2024 Unity Technologies 55 of 91 | unity.com

| Setting up your first Netcode project | Network synchronization | Network latency and performance |

 public override void OnNetworkDespawn()
 {
 m_NetworkColor.OnValueChanged -= OnColorChanged;
 }
 private void OnColorChanged(Color oldColor, Color newColor)
 {
 UpdateMaterialColor(newColor);
 }

 private void UpdateMaterialColor(Color newColor)
 {
 if (m_InstanceMaterial != null)
 {
 m_InstanceMaterial.SetColor(“_BaseColor”, newColor);
 }
 }
}

When a player enters the trigger, this script will toggle the base color property of its material
instance. The script uses a NetworkVariable called m_NetworkColor .

Here’s a breakdown of how this works:

 — This NetworkVariable keeps track of the actual color value and then syncs across all
clients. Though the script runs on both the server and the clients, by default, only the
server has write permissions to the NetworkVariable. Clients can only read its Color
value .

 — The OnValueChanged event updates the trigger’s material base color whenever the
NetworkVariable changes. The script subscribes to the event in OnNetworkSpawn and
unsubscribes in OnNetworkDespawn .

While a NetworkTransform is specific to syncing transform data (position, rotation, scale), a
NetworkVariable can sync more general data types, including primitive types, custom structs,
and other data necessary for game state management.

When working on a client, you can’t change the NetworkVariable directly because it is server-
authoritative. Instead, the client must notify the server to make any changes. The server updates
the state and propagates it back, and only then does the client see the change take effect.

To handle communication for changes like this, we use an RPC. RPCs can allow one device to
require another device to perform specific actions or updates. RPCs can be called from the
client to the server, or vice versa.

https://unity.com/releases/lts

© 2024 Unity Technologies 56 of 91 | unity.com

| Setting up your first Netcode project | Network synchronization | Network latency and performance |

Let’s look at how to implement an RPC for this purpose.

A server RPC runs remotely from the client to the server.

Adding an RPC
RPCs allow you to invoke functions on the server or other clients remotely. Methods marked
with [Rpc(SendTo.Server)] are called on the server from a client, and those marked with
[Rpc(SendTo.Client)] are called on clients from the server. You can also use the legacy
syntax [ServerRpc] or [ClientRpc] to indicate a server RPC or client RPC here.

RPCs are much like other methods, except they must follow a few conventions:

 — Rpc attribute: Annotate your method with the [Rpc] attribute and specify a possible
target, e.g., [Rpc(SendTo.Server)] will call the method only on the server.

 — Naming convention: End the method name with the suffix “Rpc” e.g., DoSomethingRpc .

RPCs are better suited for discrete events, such as player actions or specific game state
changes that do not need continuous synchronization.

Append these methods to the TriggerColor script:

 private void OnTriggerEnter(Collider other)
 {
 NetworkObject networkObject = other.GetComponent<NetworkObject>();
 if (IsClient && networkObject != null && networkObject.IsOwner)
 {
 ChangeColorServerRpc(networkObject.OwnerClientId);
 }
 }

https://unity.com/releases/lts

© 2024 Unity Technologies 57 of 91 | unity.com

| Setting up your first Netcode project | Network synchronization | Network latency and performance |

 [Rpc(SendTo.Server)]
 private void ChangeColorServerRpc(ulong playerId)
 {
 // Simple team system: blue for even, red for odd
 Color newColor =
 (playerId % 2 == 0) ? new Color(0, 0, 1, 0.5f) : new Color(1, 0, 0, 0.5f);

 m_NetworkColor.Value = newColor;
 }

In a single-player game, you could add the appropriate logic to OnTriggerEnter. However,
in a multiplayer game, you typically handle interactions using client-server communication to
ensure that all clients remain in sync.

Instead of setting the m_NetworkColor value directly, OnTriggerEnter checks if the
current game instance is a client. If it is, it calls ChangeColorServerRpc and passes in the
OwnerClientId .

This method determines the new color based on the player’s ID (in this example, even ID
numbers become blue, while odd IDs become red) and updates the m_NetworkColor value.

This change is propagated to all connected clients, ensuring every game instance
has a consistent view of the game state. When the m_NetworkColor changes, the
OnColorChanged method is triggered on all clients, updating the trigger’s material color.

This simple game mechanic shows client-server interactions.

https://unity.com/releases/lts

© 2024 Unity Technologies 58 of 91 | unity.com

| Setting up your first Netcode project | Network synchronization | Network latency and performance |

Trigger mechanic

Even though this is a simple example, similar game mechanics can be found in many
multiplayer games where the player’s actions can trigger visual changes to the
environment. For example:

 — In a cooperative puzzle game, players may need to use buttons or triggers to
interact with the environment. The visual cues that happen in the game environment
serves as a signal for everyone to coordinate their actions.

 — In a competitive shooter, players can take control points on the level. These often
change color to the team that controls them. Again, this doubles as a visual cue to
players to adjust their strategies accordingly.

 — In online RPGs, specific areas of the level can trigger buffs, debuffs, or other effects .

RPCs versus NetworkVariables
When synchronizing data, choosing between NetworkVariables and RPCs depends on the use
case:

 — NetworkVariables and NetworkTransforms are ideal for continuously synchronized data,
such as positions, health points, or in this case, the color state of the trigger. Here, the
color trigger uses a NetworkVariable to store its active color.

 — Use cases: Health points, positional data, game scores

 — Remote procedure calls (RPCs) are better suited for discrete events, such as player
actions or specific game state changes that do not need continuous synchronization.
In this example, the RPC notifies all clients when a player enters the trigger zone,
prompting the server to change the color based on the player’s ID.

 — Use cases: Player actions (e.g., shooting, using an ability), game events (e.g.,
spawning, game start, game won)

Both mechanisms are essential for data synchronization in networked games, where
NetworkVariables manage ongoing states and RPCs handle specific events and actions.

https://unity.com/releases/lts

© 2024 Unity Technologies 59 of 91 | unity.com

| Setting up your first Netcode project | Network synchronization | Network latency and performance |

These gameplay examples can help you determine when to use NetworkVariables or RPCs.

Task/system RPCs NetworkVariables

Inventory
management

Notify clients when an item is
picked up or used, to be added
or removed from the inventory.

Maintain the current inventory for
each player. The inventory can be a
NetworkList that syncs the list of items.

Combat
systems

Execute combat actions like
attacks or special moves. An
RPC can apply damage and
effects.

Track the health and status of each
player. Health points and active
status effects can be synced using
NetworkVariables.

Environmental
interactions

Trigger specific actions like
opening a door or activating a
mechanism.

Maintain the state of interactive
objects, such as whether a door is
open or closed.

Objectives Signal the completion of an
objective.

Track ongoing progress toward an
objective. Store the number of items
collected or completed tasks in a
NetworkVariable.

For a more detailed discussion, see the RPC vs NetworkVariable documentation page .

Designing for multiplayer
Now that you’re familiar with the basics of netcode, it’s essential to adopt a “networked
multiplayer” mindset when creating your games. What might be simple in a single-player game
often becomes more complex when we need to incorporate NetworkVariables or RPCs to
create the same behavior over multiple devices.

Plan how you’ll synchronize the states between clients and the server. Use NetworkVariables
for continuously synced data and RPCs for discrete events. Then, make sure to minimize
network traffic by syncing only what’s necessary.

While it’s possible to convert a single-player game into a multiplayer game, it’s usually more
efficient to design with multiplayer in mind from the start. Decide early which objects and
actions will be owned by the server and which can be managed by the clients. While server
authority offers the most security and consistency, balance that with client authority to reduce
latency for certain actions.

This latency can be a sore sticking point in building your networked game, so let’s next
examine how it impacts the multiplayer experience.

For some inspiration, see this Unite 2024 session that explores the most common and
significant mistakes in making a multiplayer game, and how to avoid them to improve your
chances of success.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.netcode.gameobjects@2.0/api/Unity.Netcode.NetworkList-1.html
https://docs-multiplayer.unity3d.com/netcode/current/learn/rpcvnetvar/
https://www.youtube.com/watch?v=UiAhrW8i7oA

© 2024 Unity Technologies 60 of 91 | unity.com

Network latency
and performance

If you’ve ever played an online game, you likely have firsthand experience with how latency
can detract from the experience. Poor bandwidth and unstable networking connections lead
to jerky player movement, inconsistent frame rates, and noticeable input lag.

Now that you understand how clients and servers communicate, you can appreciate why this
happens. With the internet filling the gap between your devices, a lot can go wrong. Even
with the extra reliability of Unity Transport, UDP packets can get lost, arrive out of order, or
get damaged on the way to their destination. These are potential sources of latency, also
perceived as lag.

Simulating latency
To understand and mitigate the effects of latency during development, you can simulate
various network conditions in the Unity Editor using either the Debug Simulator in the
UnityTransport or Network Simulator.

Unity Transport Debug Simulator

Adjust the Debug Simulator in the UnityTransport component to introduce artificial latency,
jitter, and packet loss. You can find these settings in the Inspector when selecting the
NetworkTransport object in your scene. Set a few values to recreate network congestion:

Latency: Add a delay in milliseconds to simulate slower network connections. For example, set
latency to 100ms to mimic moderate network delay.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.transport@2.4/manual/index.html

© 2024 Unity Technologies 61 of 91 | unity.com

| Network synchronization | Network latency and performance | Testing and debugging networked games |

Jitter: Introduce variability in latency to simulate fluctuating network conditions. For instance,
set jitter to 50ms to see how unstable connections affect gameplay.

Packet Loss: Specify a percentage of packets to drop, mimicking poor connection quality. Try
setting packet loss to 5% to understand its impact on gameplay.

Play the game application again to observe how these simulated conditions affect gameplay.

Adjust the Debug Simulator of the Unity Transport.

Network Simulator

The Network Simulator from the Multiplayer Tools package lets you test less-than-ideal network
conditions. This can help you discover and fix issues before they surface in production. It
facilitates simulating network events, such as network disconnects, lag spikes, and packet loss .

Install the Network Simulator from the Multiplayer Tools package.

https://unity.com/releases/lts
https://docs-multiplayer.unity3d.com/tools/current/tools-network-simulator/
https://docs-multiplayer.unity3d.com/tools/current/tools-network-simulator/#network-events
https://docs-multiplayer.unity3d.com/tools/current/tools-network-simulator/#disconnects
https://docs-multiplayer.unity3d.com/tools/current/tools-network-simulator/#lag-spikes
https://docs-multiplayer.unity3d.com/tools/current/tools-network-simulator/#packet-loss

© 2024 Unity Technologies 62 of 91 | unity.com

| Network synchronization | Network latency and performance | Testing and debugging networked games |

Test latency in the Network Simulator.

Other network conditioners

The Debug Simulator or the Network Simulator only work in the Editor, however. For runtime
builds, alternative network conditioners can be used to simulate latency. Tools such as clumsy
for Windows and Network Link Conditioner for macOS/iOS can recreate various network
conditions for thorough testing.

For more information see the Testing and Debugging section further on in this guide.

Dealing with the impact of latency on application performance is one of the biggest challenges
in multiplayer development. Fortunately there are some strategies to help mitigate the effects
of latency. Let’s explore a few of them here.

https://unity.com/releases/lts
https://github.com/jagt/clumsy?tab=readme-ov-file

© 2024 Unity Technologies 63 of 91 | unity.com

| Network synchronization | Network latency and performance | Testing and debugging networked games |

Client-side interpolation
One way to reduce the effects of latency is client-side interpolation. In this method, each
client intentionally delays rendering by a short interpolation period, rather than rendering it
right away.

In client-server topology, clients generally render a state that is about half the round-trip time
(RTT) behind the server. Client-side interpolation adds an extra intentional delay on top of that.

By running slightly behind, clients can buffer incoming state updates from the server. When
it’s time to render the next update, the client calculates an interpolated state from the two
most recent server ticks.

The buffer allows the client to render regular client updates, even if ticks from the server arrive
at a jittered, irregular rate. The interpolated states conceal minor latency or jitter.

The client renders interpolated states from a buffer.

Client-side interpolation is available in Netcode for GameObjects as a flag on the
NetworkTransform component. Enabling Interpolation interpolates position, rotation, and
scale for the associated GameObject.

Client-side interpolation enabled on the NetworkTransform.

https://unity.com/releases/lts

© 2024 Unity Technologies 64 of 91 | unity.com

| Network synchronization | Network latency and performance | Testing and debugging networked games |

Just bear in mind that client-side interpolation introduces a slight delay in rendering, which is
necessary for the interpolation.

Client-side prediction and anticipation
In our earlier example, the ClientNetworkTransform gives the client direct control over
player movement, making the game feel more responsive and instant. However, it’s important
to note that client authority is not possible in many games due to a number of factors, such as
game design, fairness, and security.

Why server authority

In competitive games where fair competition is crucial, client authority can give players the
ability to cheat or exploit the game by manipulating the client-side code or data. Games with
complex player interaction and shared game worlds often require server authority to ensure
data integrity, prevent tampering, and maintain a consistent experience for all players. Here,
server authority is required to ensure a level playing field and maintain the integrity of the game.

This means using the standard NetworkTransform component instead of the owner-
authoritative ClientNetworkTransform. This ensures that client input does not control the
player; instead, only the server will have control.

Moving a NetworkTransform using server authority.

Server authority, however, can exacerbate latency. Instead of manipulating an onscreen player
directly, each client must send its inputs to the server. The server then processes those inputs
to simulate the game and calculates the game state. Only when the client receives the results
of that simulation can it display the next frame.

When using an authoritative server, players perceive latency because of the time it takes for
data to travel from the client to the server and back again. In this scenario, clients tend to lag
behind the server, especially as your UDP packets need to traverse the internet.

https://unity.com/releases/lts

© 2024 Unity Technologies 65 of 91 | unity.com

| Network synchronization | Network latency and performance | Testing and debugging networked games |

For many elements in a game, this lag might be acceptable, but for others, like the player’s
character, such lag can ruin the feel of the game and make it difficult to play.

How client-side prediction works

Client-side prediction offers one solution to the lag introduced by server authority. Instead
of waiting for the server’s response, the client predicts the game state a fraction of a second
into the future and updates the game visually. This is called “prediction” because the client
predicts the game state without knowing the true state from the server.

By doing this, the client can provide instant visual feedback to the player’s actions, making the
game feel responsive.

Client predicts the game state.

Simultaneously, the client sends the player’s actions to the server in a packet. The server
receives the client’s input packet and simulates the game state using those inputs. The server
processes these inputs to simulate the game state, establishing the authoritative game state
as the ground truth. The server sends that authoritative state back to the client.

The server sends back the authoritative state.

https://unity.com/releases/lts

© 2024 Unity Technologies 66 of 91 | unity.com

| Network synchronization | Network latency and performance | Testing and debugging networked games |

Reconciliation and rollback

The client then compares the authoritative state with the anticipated state and looks for any
differences. If the two states are close enough, then nothing happens and the client continues
playing.

If there is a significant mismatch – also called a “desync” – then, the client must decide how to
correct its state to match the server’s authoritative state. This process is called reconciliation .

The client receives a mismatched state, or “desync.”

To handle latency and compensate for it, the client stores a history of its inputs and predicted
state for a certain number of frames. When a desync occurs, the client can roll back its state
to the last known correct state from the server. Then, it re-simulates the game from that point
using the correct inputs. This brings the client state back in sync with the server.

The client reconciles the desync.

https://unity.com/releases/lts

© 2024 Unity Technologies 67 of 91 | unity.com

| Network synchronization | Network latency and performance | Testing and debugging networked games |

On any given frame, the client may need to re-simulate several frames, which is why a
networked application can be more computationally expensive. This reconciliation and
rollback, however, is what helps maintain a smooth and consistent experience for the player
even with the presence of network latency.

Client-side anticipation in Netcode for GameObjects

Netcode for GameObjects supports client anticipation, a simplified model for handling latency
without full client-side prediction and reconciliation. It uses these components:

 — AnticipatedNetworkVariable<T> is a generic component used for scalar or simple
data types like integers, floats, and colors. It’s suitable for non-transform properties such
as health, score, or item states.

 — AnticipatedNetworkTransform works similarly to AnticipatedNetworkVariable
but is designed for Transform data, including position, rotation, and scale.

Client anticipation allows the client to provide immediate visual feedback to the user while
waiting for the server’s authoritative update. This helps make the game feel more responsive.
In our simple ColorTrigger example, when a player changes the color of an object from white
to blue, the client can visually update the color immediately while waiting for the server to
confirm the change.

Between the client and server, anticipation would look something like this:

The client anticipates the game state.

AnticipatedNetworkVariable<T> and AnticipatedNetworkTransform both work by
separating values into anticipated (visual) and authoritative states.

Anticipation refers to the client’s predicted state, which provides immediate visual feedback
to the player locally. The authoritative state is determined by the server. When the server’s
update arrives, the client compares its anticipated state with the authoritative state. If they
differ significantly, the client adjusts its state to match the server’s, ensuring consistency
across all clients.

https://unity.com/releases/lts

© 2024 Unity Technologies 68 of 91 | unity.com

| Network synchronization | Network latency and performance | Testing and debugging networked games |

Client anticipation can ignore stale data.

Client anticipation also needs to account for “stale data” – updates from the server that reflect
actions occurring before the client’s last request. Netcode for GameObjects provides two ways
to handle this through the StaleDataHandling property:

 — StaleDataHandling.Ignore ignores stale data and keeps the anticipated value. This
can be useful if the state is changing rapidly and causing visual flickering.

 — StaleDataHandling.Reanticipate treats stale data like any other server update,
triggering rollback and re-anticipation, which replays player inputs to maintain
consistency.

To prevent choppy visual updates when server values differ from anticipated values, use the
Smooth method available to both components.

Smooth requires a starting value, a final value, and a duration for the smoothing process. This
helps maintain a smooth and responsive visual experience despite network latency.

While client anticipation improves gameplay responsiveness, this simplified approach may not
cover all cases of latency and network issues.

Note that true rollback and reconciliation require a deterministic physics system, which
ensures that the same inputs will always produce the same results (below). This is essential
for accurately rolling back and resimulating game states. Without determinism, discrepancies
can arise between the server and client simulations.

Netcode for GameObjects does not support deterministic physics, which is necessary for true
client prediction and lag compensation. Instead, Netcode for GameObjects provides a simpler
solution that focuses on client anticipation and smoothing. This can improve responsiveness
without a full rollback system.

https://unity.com/releases/lts

© 2024 Unity Technologies 69 of 91 | unity.com

| Network synchronization | Network latency and performance | Testing and debugging networked games |

Deterministic physics
A deterministic physics system ensures that given the same initial conditions and inputs,
the physics simulation will always produce the same results.

Note that Netcode for GameObjects uses Unity’s built-in physics engine, which is not
deterministic. When re-running the simulation with the same inputs, the physics system
does not guarantee identical results.

Netcode for Entities, however, supports Unity Physics and Havok Physics, both of which
offer deterministic simulation capabilities. This allows Netcode for Entities to support true
client-side prediction.

Client-side prediction in Netcode for Entities

Netcode for Entities offers advanced tools for handling client-side prediction and lag
compensation. The same simulation code runs on both the client and the server for each
entity. This allows the client to predict the state of the game based on player inputs, giving
immediate feedback without waiting for the server’s response.

When the client receives the latest snapshot from the server, it updates all the predicted
entities with this data. After applying this snapshot, the client runs a simulation called the
PredictedSimulationSystemGroup. This simulation processes from the oldest saved tick to
the current target time, rolling back and re-simulating the game state to ensure that the client
accurately simulates the game state. This rollback and re-simulation process helps the client
correct any discrepancies and maintain synchronization with the server’s authoritative state.

On the server side, the prediction loop runs once per frame. The server updates the
authoritative game state and sends this updated state back to the client.

The client stores a history of inputs and predicted states. When a desync occurs, the client
rolls back to the last correct state from the server and re-simulates the game using the correct
inputs. This keeps the client in sync with the server’s “ground truth.”

Netcode for Entities also supports advanced physics features like:

 — Multiple physics worlds: This allows for local-only physics simulations that don’t need to
be replicated across the network.

 — Custom physics proxies: These enable interactions when you would like to make the
ghosts interact with physics objects that are present only on the client (ex: debris).

 — Deterministic physics simulation: This ensures that the client and server simulations
produce the same results given the same inputs, maintaining consistency between the
client and server states .

The GhostPredictionSmoothingSystem helps smooth out prediction errors by transitioning
between predicted and authoritative states, with options for custom smoothing.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Deterministic_system
https://docs.unity3d.com/Packages/com.unity.physics@1.3/manual/index.html
https://docs.unity3d.com/Packages/com.havok.physics@1.3/manual/index.html
https://docs.unity3d.com/Packages/com.unity.netcode@1.4/api/Unity.NetCode.PredictedSimulationSystemGroup.html
https://docs.unity3d.com/Packages/com.unity.netcode@1.4/manual/physics.html#multiple-physics-worlds
https://docs.unity3d.com/Packages/com.unity.netcode@1.4/manual/physics.html#interaction-between-predicted-and-client-only-physics-entities
https://docs.unity3d.com/Packages/com.unity.netcode@1.4/manual/physics.html
https://docs.unity3d.com/Packages/com.unity.netcode@1.4/api/Unity.NetCode.GhostPredictionSmoothingSystem.html

© 2024 Unity Technologies 70 of 91 | unity.com

| Network synchronization | Network latency and performance | Testing and debugging networked games |

This combination of prediction, rollback, lag compensation, and smoothing techniques
minimizes the impact of latency and helps maintain game integrity and responsiveness.

Compare how Netcode for GameObjects and Netcode for Entities handle client prediction:

Feature Netcode for GameObjects Netcode for Entities

Prediction
Method

Client anticipation: The client
anticipates server responses.

Full client prediction: The client runs the
same simulation code as the server.

Latency
Mitigation

Anticipates server results and
smooths transitions

Uses rollback and re-simulation to correct
desyncs

Snapshots Not explicitly used
Uses snapshots to represent game state
at specific moments in time

Lag
Compensation

Simplified model with
StaleDataHandling options

Comprehensive lag compensation with a
reference to collision worlds

Physics
Interaction

Limited to client-side
prediction with anticipated
transforms

Supports interaction between predicted
and client-only physics worlds

Smoothing Uses the Smooth method for
anticipated values

GhostPredictionSmoothingSystem for
smoothing transitions between predicted
and authoritative states

Use Case
Suitable for simpler games
requiring immediate visual
feedback

Suitable for complex games requiring
accurate state synchronization

Both Netcode for GameObjects and Netcode for Entities provide mechanisms to handle client
prediction and mitigate latency issues encountered during multiplayer networking. While
Netcode for GameObjects offers a simplified model using client anticipation, Netcode for
Entities provides a more advanced system with full prediction, rollback, and lag compensation.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.netcode@1.4/manual/physics.html
https://docs.unity3d.com/Packages/com.unity.netcode@1.4/api/Unity.NetCode.GhostPredictionSmoothingSystem.html
https://docs.unity3d.com/Packages/com.unity.netcode@1.2/api/Unity.NetCode.GhostPredictionSmoothingSystem.html

© 2024 Unity Technologies 71 of 91 | unity.com

| Network synchronization | Network latency and performance | Testing and debugging networked games |

Netcode for Entities terms

Netcode for Entities uses the Entity Component System (ECS) and Data-Oriented
Technology Stack (DOTS), which differ from the MonoBehaviour workflow used in
Netcode for GameObjects. Here are some terms that may be new:

Entity: In ECS, an entity is a basic unit of data representing individual GameObjects or
components within the game. Entities are lightweight and contain no behavior, only data.

Game world: The game world refers to the entire environment in which the game takes
place. It includes all the entities, their states, and the rules governing their interactions.

Collision world: The collision world is the state of all physical objects in the game world,
including their positions, velocities, and interactions. It is used for collision detection and
physics simulations.

Snapshot: A snapshot (also called “ghost snapshot”) is a set of data representing the
game state at a specific moment in time. Clients and servers periodically stay in sync by
updating the game state via snapshots.

Ghost: A ghost is a networked entity that is replicated across clients and the server. Every
frame, the server sends a snapshot of the current state of all ghosts to the client. Ghosts
are used to synchronize the state of entities between the server and clients, ensuring that
all players have a consistent view of the game world.

Predicted ghost: A predicted ghost is a client-side entity simulated locally to provide
instant visual feedback for player actions, reducing perceived latency. Use these for
entities that are directly controlled by the player or other interactive entities that need
immediate feedback.

Interpolated ghost: An interpolated ghost is a representation of a server-side entity on a
client. The client displays its state based on snapshots received from the server, blending
them to minimize jitter caused by latency. Use these for entities not controlled directly by
the player that don’t require immediate feedback, like other players’ characters, NPCs, or
server-controlled entities.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.entities@1.3/manual/index.html
https://docs.unity3d.com/Packages/com.unity.netcode@1.0/manual/ghost-snapshots.html
https://docs.unity3d.com/Packages/com.unity.netcode@1.2/manual/ghost-spawning.html

© 2024 Unity Technologies 72 of 91 | unity.com

Testing and debugging
networked games

Testing and debugging your multiplayer games works differently than their single-player
counterparts. Be aware of the general workflow for your netcode projects:

 — Local testing runs multiple instances of the game to assess the interaction between
players. Use player builds, the Multiplayer Play Mode package, and Network Scene
Visualization to develop your application.

 — Simulate network conditions with scripts or the NetcodeTransport component. This can
recreate latency, jitter, and packet loss to mimic real-world network issues.

 — Client-connection management handles behaviors for joining, reconnecting, and
disconnecting clients.

 — Logging uses the debug tools to monitor troubleshoot issues.

 — A command line helper launches game instances with specific roles and network
conditions to automate testing.

Local testing
Developing multiplayer games relies on local testing, where you simulate multiple instances of
the game to mimic how different players interact in networked conditions.

Player builds

Player builds allow for hosting and joining games by running multiple instances of the game
executable. You can also run these alongside the Unity Editor, enabling simultaneous hosting
and joining of games on a single device to simulate multiplayer scenarios.

https://unity.com/releases/lts

© 2024 Unity Technologies 73 of 91 | unity.com

| Network latency and performance | Testing and debugging networked games | Multiplayer Services |

Multiplayer Play Mode (MPPM)

Included in Unity 6, the Multiplayer Play Mode (MPPM) package enables the simulation of up
to four players on a single development device using the same source assets. This feature
eliminates the need for separate player builds, reducing build times during testing.

macOS users

For macOS users, running multiple instances of an app requires command line commands.
Use the open command at the terminal to launch a separate instance of your application.

For example, at the Terminal, execute open -n YourAppName.app to launch a separate
instance of the YourAppName application .

Simulating network conditions
When testing locally, all game instances run on the same network interface. There will be little
to no latency between the clients, so you’ll need to introduce artificial conditions to simulate a
real-world environment.

Latency, jitter, and packet loss can impact gameplay. Testing your application with less than
ideal network conditions can ensure that your final build performs well over the internet.

Determining which conditions to test depends on factors such as target platform, region,
and the design of your game. As a starting point, use latency values around 100-150 ms for
desktop and 200-300 ms for mobile, along with 5-10% packet loss. Testing with jitter and
packet loss is essential, as it introduces realistic instability. See this documentation page for
more guidelines.

For testing locally within the Editor, you can use the Network Simulator tool from the
Multiplayer Tools along with Multiplayer Play Mode.

For testing development builds, we suggest using the Network Simulator tools with some
custom code to inject adverse network conditions into the build (the Network Simulator
window only works in the Editor).

For testing release builds, we suggest using clumsy if you’re on Windows and Network Link
Conditioner if you’re on macOS or iOS. A scriptable alternative to Network Link Conditioner
on macOS is dummynet, which offers great control and comes packaged with the operating
system.

See System-wide network conditioners for full details.

https://unity.com/releases/lts
https://docs-multiplayer.unity3d.com/mppm/0.6.0/about/#:~:text=You%20can%20use%20Multiplayer%20Play,same%20source%20assets%20on%20disk.
https://docs-multiplayer.unity3d.com/netcode/current/tutorials/testing/testing_with_artificial_conditions/#how-much-lagpacket-lossjitter-should-we-use
https://docs-multiplayer.unity3d.com/tools/current/tools-network-simulator/
https://docs-multiplayer.unity3d.com/netcode/current/tutorials/testing/testing_with_artificial_conditions/#debug-builds
https://jagt.github.io/clumsy/
https://manpagez.com/man/8/dnctl/
https://docs-multiplayer.unity3d.com/netcode/current/tutorials/testing/testing_with_artificial_conditions/#system-wide-network-conditioners

© 2024 Unity Technologies 74 of 91 | unity.com

| Network latency and performance | Testing and debugging networked games | Multiplayer Services |

Testing client connections
Testing client connection management in a networked game is important to avoid bugs and
provide a smooth gaming experience. Here are some things to test and watch out for:

Clients connecting:

 — Test cases can include clients joining new game sessions, rejoining after leaving or
hosting, late-joining ongoing games, and handling denied connections.

 — Consider if the client’s previous state affects connection and if the game state replicates
correctly from the server.

 — Check if the server handles reconnections or late-joining properly.

Clients disconnecting:

 — Test graceful client shutdowns, timeouts, and the impact of losing connection to the
host/server.

 — Ensure objects tied to the game session reset properly if not destroyed, and that clients
can reconnect to a new game.

Host/Server starting the session:

 — Test starting new game sessions and after shutting down previous sessions, especially
in client-hosted games.

 — Consider if the application’s state before starting a new session affects the game.

Host/Server shutting down:

 — Test graceful shutdowns of the host/server, especially when using external services like
Unity Game Services or lobby services.

 — Ensure clients are notified of the shutdown, and external services are properly informed.

Thorough attention to these test cases can help maintain a stable and enjoyable networked
gaming experience.

For more specifics, see Testing Client Connection Management .

https://unity.com/releases/lts
https://docs-multiplayer.unity3d.com/netcode/current/tutorials/testing/testing_client_connection_management/

© 2024 Unity Technologies 75 of 91 | unity.com

| Network latency and performance | Testing and debugging networked games | Multiplayer Services |

Techniques for debugging multiplayer games
When debugging multiplayer games, all conventional game development wisdom applies.
However, certain scenarios that are typical to multiplayer game development call for special
tricks and approaches.

Below is a list of techniques that may help you when developing multiplayer games with Unity:

 — Debug drawing techniques: Use debug lines from Debug.DrawRay and Debug.DrawLine
to indicate network positions, movement intentions, and objection interactions. They are
useful when combined with side-by-side recordings of multiplayer gameplay.

 — Netcode-enabled Line Renderer: Sometimes it’s useful to have visual feedback that
shows a specific direction, value, or any other useful debug metric pertinent to your
project. See this example script for implementing a Netcode-enabled Line Renderer .

 — Text-Based logging: Text-based logging can track non-visual events (such as RPCs) and
information. Include network tick and client id in log messages to make it easier to build
a timeline when reading the logs.

 — Network conditioning: Use the Network Simulator tools for application-level network
conditioning. This can simulate artificial network conditions and help test for errors
specific for latency, jitter, and packet loss. Read more at System-wide network
conditioners .

 — Screen recordings: Record both client and server instances simultaneously to compare
real-time gameplay. In debug builds, be sure to stamp each frame with the client ID
and the current frame number; this provides a visual reference for a side-by-side
comparison.

 — Increasing fixed timestep: Despite using good debug rendering and logging, it can be
hard sometimes to understand what’s going on – even when going through the frames
one by one. Increasing the FixedTimeStep setting to a large value (for example, 0.2) can
provide extra clarity into the game’s behavior during each frame.

 — Using Breakpoints: When using breakpoints to debug a game, your connection may time
out if you stay too long in this mode. Since it pauses your game, you can temporarily
increase the timeout value to avoid disconnecting.

See this guide on Techniques and tricks for debugging multiplayer games for more tips and
techniques.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Debug.DrawRay.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Debug.DrawLine.html
https://docs-multiplayer.unity3d.com/netcode/current/tutorials/testing/techniques_and_tricks_for_debugging_multiplayer_games/#a-netcode-enabled-line-renderer
https://docs-multiplayer.unity3d.com/netcode/current/tutorials/testing/testing_with_artificial_conditions/#system-wide-network-conditioners
https://docs-multiplayer.unity3d.com/netcode/current/tutorials/testing/testing_with_artificial_conditions/#system-wide-network-conditioners
https://docs-multiplayer.unity3d.com/netcode/current/tutorials/testing/techniques_and_tricks_for_debugging_multiplayer_games/

© 2024 Unity Technologies 76 of 91 | unity.com

| Network latency and performance | Testing and debugging networked games | Multiplayer Services |

Command line helper
Repeatedly launching and testing multiplayer builds from within the Unity Editor can be time-
consuming. Consider using a command-line tool to automate launching and testing multiplayer
game builds outside of the Editor environment.

This sample NetworkCommandLine script can help you get started. Attach the
NetworkCommandLine component to a GameObject to ensure that the script is included in
your build and can be accessed via the command line.

In the Player Settings, beneath Settings for PC, Mac, & Linux Standalone, select Resolution
and Presentation. Set the Resolution to Windowed. This will make it easier to test multiple
instances of your game side by side.

The NetworkCommandLine script should first check if the game is running outside the Editor.
If so, it should read the command-line arguments to determine the desired mode (server, host,
or client) and start the corresponding services. This will allow you to launch your game build
with specific network roles from the command line.

Build a binary from File > Build Settings then test at the command line.

On Windows:

Open the Command Prompt and navigate to the directory where you saved your build. Use
specific commands to start the server or client instances of your game, adjusting the paths as
necessary. For example:

<Path to Project>\HelloWorld.exe -mode server
<Path to Project>\HelloWorld.exe -mode client

On macOS:

On macOS, open the Terminal and use similar commands as mentioned above, but adjust the
paths to match the macOS directory structure. For example:

<Path to Project>/HelloWorld.app/Contents/MacOS/<Project Name> -mode server
<Path to Project>/HelloWorld.app/Contents/MacOS/<Project Name> -mode client

Optionally, you can log the output of your game instances to text files for easier tracking and
analysis with the -logfile flag.

https://unity.com/releases/lts
https://docs-multiplayer.unity3d.com/netcode/current/tutorials/command-line-helper/

© 2024 Unity Technologies 77 of 91 | unity.com

Multiplayer Services

https://unity.com/releases/lts

© 2024 Unity Technologies 78 of 91 | unity.com

| Testing and debugging networked games | Multiplayer Services | Sample projects and resources |

Unity provides a number of services that can simplify your networked multiplayer
development. Start learning about each service by looking at the documentation for the
Multiplayer Services package, which simplifies the work it takes to manage dependencies
across multiplayer services. For example, you can:

 — Quickly add multiplayer elements that integrate Unity Gaming Services into your game.
Set up Lobby, Relay, Distributed Authority, Matchmaker and Multiplay Hosting.

 — A new session system provides a simple shared cloud-side backing for a multiplayer
game loop that groups players together and manages a shared session/player state.

 — Create and manage peer-to-peer (P2P), Dedicated Game Server, and Distributed
Authority hosted online sessions. Players can join sessions through matchmaking, a Join
Code, or by browsing a list of active sessions.

Let’s take a brief look at each of the services:

Matchmaker
Matchmaking is the process of connecting players with other players or game sessions based
on specified criteria, such as skill level or geographic location, to ensure a balanced and
enjoyable game experience.

Implementing Unity’s Matchmaker service involves several steps:

 — Define matchmaking criteria: Determine the parameters that will be used to
match players. This can include skill level, geographic proximity, latency, and player
preferences.

 — Player profiles and ratings: Maintain profiles for each player that include their
matchmaking criteria. Use rating systems (e.g., Elo rating) to assess player skill levels
and ensure balanced matches.

 — Matchmaking requests: When a player requests a match, the matchmaking service
searches for suitable opponents or teammates based on the defined criteria. This
involves querying a pool of available players and finding the best possible match.

 — Match assignment: Once a suitable match is found, players are assigned to a game
session. The service ensures that all players are connected and ready to start the game.

 — Dynamic adjustments: If specific criteria cannot be met, the matchmaking service can
adjust its parameters dynamically to ensure that matches are made promptly without
compromising too much on quality.

Use Unity’s Matchmaking to create fair and competitive matches by considering these factors.

https://unity.com/releases/lts
https://docs.unity.com/ugs/en-us/manual/mps-sdk/manual
https://docs.unity.com/ugs/en-us/manual/mps-sdk/manual
https://docs.unity.com/ugs/en-us/manual/matchmaker/manual/matchmaker-overview

© 2024 Unity Technologies 79 of 91 | unity.com

| Testing and debugging networked games | Multiplayer Services | Sample projects and resources |

Lobby
Lobbies are pre-game areas where players can gather, configure game settings, and prepare
to start the game. The Lobby service provides a way for players to discover and connect to
each other for various multiplayer gaming scenarios. Some common examples include:

 — Browsing a list of available game sessions to select and join one

 — Sharing a join code with your friend to allow them to connect to your game session

 — Using Quick Join to find any available match and jump in

 — Creating a public or private lobby and sending invites to your in-game friends list

 — Hosting a lobby from a game server to manage and restrict access to the server session

 — Query for lobbies that match specific requirements (e.g. game mode, map type)

The Game lobby sample demonstrates how to use the Lobby and Relay packages to create a
typical game lobby experience, including Vivox Voice chat. Players can host lobbies that other
players can join using a public lobby list or lobby code. They can then connect via Relay to use
Unity Transport for basic real-time communication.

Relay
Unity Relay simplified connecting multiple players through a join code system. When a host
sets up a game session, they generate a unique join code to share with friends or teammates,
who use it to connect to the session. This system streamlines the connection process while
ensuring privacy by keeping sensitive information like IP addresses hidden.

In peer-to-peer multiplayer games, connecting clients can be difficult due to network issues
like NAT (Network Address Translation) and firewalls. Direct connections often require complex
network configurations and expose players’ IP addresses, raising security and privacy concerns.

Relay solves these problems by acting as an intermediary server, providing secure and
simplified connectivity between clients. It eliminates the need for dedicated servers and
reduces development overhead. With Relay, just generate a join code and your players can
connect right away.

After connection, Relay provides a join code.

See this Getting starting guide to Unity Relay for more information.

https://unity.com/releases/lts
https://docs.unity.com/ugs/manual/lobby/manual/unity-lobby-service
https://docs.unity.com/ugs/manual/relay/manual/join-codes
https://docs.unity.com/ugs/en-us/manual/lobby/manual/quick-join
https://docs.unity.com/ugs/en-us/manual/lobby/manual/create-a-lobby
https://docs.unity.com/ugs/en-us/manual/lobby/manual/query-for-lobbies
https://github.com/Unity-Technologies/com.unity.services.samples.game-lobby
https://docs.unity.com/ugs/en-us/manual/relay/manual/introduction
https://docs.unity.com/ugs/manual/relay/manual/join-codes
https://en.wikipedia.org/wiki/Network_address_translation
https://docs.unity.com/ugs/manual/relay/manual/get-started

© 2024 Unity Technologies 80 of 91 | unity.com

| Testing and debugging networked games | Multiplayer Services | Sample projects and resources |

Multiplay Hosting
Multiplay Hosting removes the complexity of running and operating infrastructure at scale, so
your development team can focus on creating engaging player experiences. It also provides
ways for you to:

 — Track server health and other analytic data .

 — Update servers with zero downtime patching .

 — Place players in servers that offers the best experience based on quality of service
(QoS) data .

 — Containerize your builds using Docker and the Multiplay Hosting container registry.

Vivox
Vivox enables better cooperative and competitive multiplayer experiences by letting your
players talk through in-game voice or text chat. Vivox allows you to integrate text and voice
chat into your service with a managed hosted solution. While also providing accessibility and
regulatory features such as speech-to-text, chat filtering, and more.

Vivox allows player communication across multiple platforms, whether your game is built in
Unreal, Unity, or a custom engine.

Plug into your game and configure your project settings to add communications to your project
from the Unity Dashboard. Connect an unlimited number of users in 2D and 3D channels.
Allow users to control voice volume, perform mute actions, and manage their channels.

See this GDC session that explains how a number of multiplayer services were integrated into
the Megacity Metro demo.

https://unity.com/releases/lts
https://docs.unity.com/ugs/en-us/manual/game-server-hosting/manual/welcome
https://docs.unity.com/ugs/en-us/manual/game-server-hosting/manual/concepts/server-analytics
https://docs.unity.com/ugs/en-us/manual/game-server-hosting/manual/concepts/zero-downtime-releases
https://docs.unity.com/ugs/en-us/manual/game-server-hosting/manual/concepts/query-protocols
https://docs.unity.com/ugs/en-us/manual/game-server-hosting/manual/concepts/query-protocols
https://docs.unity.com/ugs/en-us/manual/game-server-hosting/manual/concepts/container-builds
https://docs.unity.com/vivox/Article.html
https://unity.com/resources/megacity-metro?isGated=false

© 2024 Unity Technologies 81 of 91 | unity.com

Sample projects
and resources

Unity offers a variety of sample projects designed to help you get started with Netcode for
GameObjects and Netcode for Entities. These resources provide practical examples to guide
you through implementing multiplayer networking in your own applications.

Resources for Netcode for GameObjects

Unity Learn: Get started with Netcode for GameObjects

This Unity Learn tutorial provides practical steps on building and testing a basic multiplayer
game in Unity, as well as utilizing and testing Remote Procedure Calls (RPCs) and Network
Variables. You’ll also learn how to create a simple user interface for different modes (Host,
Client, and Server) and add and control basic movements in these modes.

https://unity.com/releases/lts
https://learn.unity.com/tutorial/get-started-with-netcode-for-gameobjects#

© 2024 Unity Technologies 82 of 91 | unity.com

| Multiplayer Services | Sample projects and resources | Next steps

A screenshot from the Unity Learn tutorial on Netcode GameObjects

https://unity.com/releases/lts

© 2024 Unity Technologies 83 of 91 | unity.com

| Multiplayer Services | Sample projects and resources | Next steps

Bitesize samples

The Bitesize Samples repository provides a series of sample code as modules to use in your
games and better understand Netcode for GameObjects. The repository includes:

 — 2D Space Shooter Sample: Learn more about physics movement and status effects using
Netcode NetworkVariables and object pooling.

The 2D Space Shooter from the Bitesize Samples

 — Distributed Authority Social Hub: Learn how to set up this topology where control and
management of the game state are distributed among multiple clients, reducing server
load.

 — Multiplayer Use Cases Overview: This sample shows you how to perform common
actions in a multiplayer environment, so that you can build the features of your game
with them in mind.

 — Client Driven Sample: Learn more about client-driven movements, networked physics,
spawning vs statically placed objects, and object reparenting.

 — Dynamic Addressables Network Prefabs: Learn more about the dynamic prefab system,
which allows us to add new spawnable prefabs at runtime.

https://unity.com/releases/lts
https://github.com/Unity-Technologies/com.unity.multiplayer.samples.bitesize?tab=readme-ov-file
https://github.com/Unity-Technologies/com.unity.multiplayer.samples.bitesize/tree/main/Basic/2DSpaceShooter
https://github.com/Unity-Technologies/com.unity.multiplayer.samples.bitesize/tree/main/Basic/DistributedAuthoritySocialHub
https://github.com/Unity-Technologies/com.unity.multiplayer.samples.bitesize/tree/main/Basic/MultiplayerUseCases
https://github.com/Unity-Technologies/com.unity.multiplayer.samples.bitesize/tree/main/Basic/ClientDriven
https://github.com/Unity-Technologies/com.unity.multiplayer.samples.bitesize/tree/main/Basic/DynamicAddressablesNetworkPrefabs

© 2024 Unity Technologies 84 of 91 | unity.com

| Multiplayer Services | Sample projects and resources | Next steps

Boss Room

Boss Room is a 3D casual co-op game sample project built with Netcode for GameObjects that
is designed to help you explore the concepts and patterns behind a multiplayer game flow.

Boss Room is a slice of a full-featured co-op multiplayer game.

Both a functional game sample and learning tool for developers interested in networked
multiplayer games, Boss Room is Unity’s longest running production-ready multiplayer sample
built with the Netcode for GameObjects workflows. This sample includes production-level
code and is integrated with our Lobby and Relay hosting services.

Boss Room demonstrates game mechanics for network play, including character abilities and
special attacks, networked physics, and state tracking (e.g., breakable objects, switches, and
doors). These techniques demonstrate how to hide latency and create smooth gameplay even
under less than ideal network conditions. Let’s take a closer look.

Game flow and state management: Boss Room includes a practical implementation of game
state, covering both the lobby and in-game play. It demonstrates how to handle player
connections, load and unload scenes for network play, and manage graceful disconnections.

Integration with UGS: Boss Room integrates several UGS features, including Relay, Lobby, and
Authentication.

Utility scripts and tools: The repo also contains a variety of utility scripts and tools that can be
adapted for use in other projects, including examples of client authority, scene management
utilities, and networked object pooling.

https://unity.com/releases/lts
https://docs-multiplayer.unity3d.com/netcode/current/learn/bossroom/bossroom/

© 2024 Unity Technologies 85 of 91 | unity.com

| Multiplayer Services | Sample projects and resources | Next steps

Client-server model: Boss Room uses a client-server model where one of the players acts as
the host (server) and other players are clients. Centralizing game logic reduces the chances of
cheating and ensures that the game state is consistent across all clients.

The start menu in the Boss Room sample project

For a deep dive into the project, be sure to check out this blog post and this four-part YouTube
webinar, “Build a production-ready multiplayer game with Netcode for GameObjects.”

The series covers foundational game mechanics and server authority, including how to
implement networked gameplay and object spawning. It also demonstrates how to enhance
game resilience to player actions and optimize for better bandwidth management. This
resource is for developers looking for practical, hands-on guidance using a full-featured
multiplayer project.

Small Scale Competitive Multiplayer template

Available from the Unity Hub, this template provides a starting point to create and ship your
multiplayer project using Netcode For GameObjects and UGS .

The template includes a Bootstrapper tool that helps you test using various network modes
(Host, Client, Server) and dynamic configurations.

https://unity.com/releases/lts
https://blog.unity.com/games/build-a-production-ready-multiplayer-game-with-netcode-for-gameobjects
https://www.youtube.com/playlist?list=PLX2vGYjWbI0SbdD3ABTPKneNdG1Lm9v7N
https://www.youtube.com/playlist?list=PLX2vGYjWbI0SbdD3ABTPKneNdG1Lm9v7N
https://github.com/Unity-Technologies/com.unity.netcode.gameobjects
https://unity.com/solutions/gaming-services

© 2024 Unity Technologies 86 of 91 | unity.com

| Multiplayer Services | Sample projects and resources | Next steps

To get started open the project and follow the instructions in the included welcome dialog.
Follow the in-editor tutorials or explore on your own and load the start scene from the
Multiplayer > Bootstrapper menu item. Adjust the value of each field of the Bootstrapper
according to what you want to test and enter Play mode.

Set the Bootstrapper options.

Remember that you can access tutorials and useful resources at any time from the Tutorials >
Show tutorials menu.

https://unity.com/releases/lts

© 2024 Unity Technologies 87 of 91 | unity.com

| Multiplayer Services | Sample projects and resources | Next steps

VR Multiplayer template

Open the VR Multiplayer template from the Unity Hub.

The VR Multiplayer template is is designed for creators starting a new project that will target
an OpenXR device. It provides everything you need for networked interactions, voice chat,
lobbies, and more. It leverages Unity Gaming Services, Netcode For GameObjects and the
XR Interaction Toolkit and is built to work well on the Meta Quest platform as well as other
OpenXR compliant devices. The key features of the VR Multiplayer template include:

 — Networked Interactions via XRI Interaction Toolkit and Netcode for GameObjects

 — Voice Communication via Vivox

 — Connect to anyone, anywhere with Relay and Lobby

 — Networked Avatars and Hands

 — Works cross platform via OpenXR

Download the Unity VR Multiplayer Template for Unity 2022 LTS and Unity 6 Preview from the
Unity Hub and check out the quickstart guide .

https://unity.com/releases/lts
https://discussions.unity.com/t/new-vr-multiplayer-template-available/1488824
https://docs.unity3d.com/Packages/com.unity.template.vr-multiplayer@2.0/manual/index.html

© 2024 Unity Technologies 88 of 91 | unity.com

| Multiplayer Services | Sample projects and resources | Next steps

Resources for Netcode for Entities

Getting started with Netcode for Entities

This on-demand webinar takes a deep dive into Megacity Metro, Unity’s large-scale, cross-
platform multiplayer game sample made with Netcode for Entities and Unity Gaming Services.
The webinar is for users who are already familiar with DOTS and want to start creating
ambitious multiplayer games.

ECS Netcode samples

These samples demonstrate many basic and advanced features, including syncing, connection
flows, integration with Unity Physics, and more. Start with the Networked Cube tutorial, which
covers:

 — Establishing a connection with the server.

 — Communicating with the server.

 — Spawning synchronized entities on the server.

 — Creating standalone builds of the server and client.

 — Running the server and a client in Play mode within the Editor.

The Networked Cube tutorial running in the Editor and as a standalone build

https://unity.com/releases/lts
https://unity.com/resources/getting-started-with-netcode-for-entities?isGated=false
https://github.com/Unity-Technologies/EntityComponentSystemSamples
https://docs.unity3d.com/Packages/com.unity.netcode@1.2/manual/networked-cube.html

© 2024 Unity Technologies 89 of 91 | unity.com

| Multiplayer Services | Sample projects and resources | Next steps

ECS Network Racing

This multiplayer racing game sample showcases best practices for using Unity Netcode for
Entities. This demo features an implementation of client-server architecture with client-side
prediction, interpolation, and lag compensation.

ECS Racing showcases advanced multiplayer features.

Megacity Metro

Megacity Metro (Unity 6, Unity 2022 LTS) is a scalable, high-concurrency, cross-platform
demo of our latest technology, including the Netcode for Entities package. This third-person
multiplayer action demo supports 128+ players.

The multiplayer sample is perfect for those who want to master implementing server-
authoritative gameplay and leveraging UGS for an end-to-end multiplayer game.

The Megacity Metro demo from Unity supports 128+ players.

https://unity.com/releases/lts
https://github.com/Unity-Technologies/ECS-Network-Racing-Sample
https://unity.com/demos/megacity-competitive-action-sample

© 2024 Unity Technologies 90 of 91 | unity.com

| Multiplayer Services | Sample projects and resources | Next steps

Learn more about building ambitious games using ECS for Unity and our Multiplayer solutions.
ECS for Unity brings value to seasoned Unity creators who need additional control and
determinism to achieve more ambitious games.

Megacity Metro features advanced mechanics like interpolation, client-side prediction and lag
compensation. Download the demo to explore services like Multiplay Hosting, Matchmaker,
and Vivox Voice Chat.

Megacity Metro uses Netcode for Entities in a multiplayer action demo.

Experimental Multiplayer Services package
Building a multiplayer game requires integrating several products and services together. With
the new Multiplayer Services package (com .unity .services .multiplayer), we’re simplifying
integration and dependencies management across multiplayer services while offering a new
way to interact with the products.

The Multiplayer Services package is a one-stop solution for adding online multiplayer elements to
a game. Powered by UGS, it combines capabilities from services such as Relay and Lobby into a
single new “Sessions” system to help you quickly define how groups of players connect together.

The Multiplayer Services package enables you to create peer-to-peer (P2P) sessions while
providing multiple methods for players to join those sessions, such as by a join code, by
browsing a list of active sessions, and “Quick Join.”

https://unity.com/releases/lts

© 2024 Unity Technologies 91 of 91 | unity.com

Next steps

Now that you have a solid foundation in networking concepts and practical experience with
Netcode for GameObjects, continue your multiplayer learning journey:

Dive into Unity Learn: We’re simplifying the multiplayer learning curve even further with
new guided content. On Unity Learn, our first Multiplayer Course will teach you the basics of
Netcode for GameObjects and guide you through your first networked project.

Explore the sample projects: Dive deeper into the sample projects, such as Boss Room,
Galactic Kittens, and the Bitesize Samples. Modding these projects will expose you to new
techniques and help discover the best practices when working with networked multiplayer.

Experiment with multiplayer services: Remember there’s no need to reinvent the wheel.
Relay, Lobby, and Matchmaker are ready to deploy into your projects. These services can
significantly reduce development time.

Master advanced techniques: As your project’s needs grow, consider Netcode for Entities.
This advanced package includes techniques like client-side prediction and lag compensation
for the highest networking performance. The Megacity Metro and ECS Racing samples
showcase these features in action.

Happy networking.

https://unity.com/releases/lts
https://learn.unity.com/tutorial/get-started-with-netcode-for-gameobjects#

unity.com

https://unity.com

	_y25msr6kogky
	_k5wokckpmk1k
	_b2v54bb0dqxk
	_c6k32bshulpc
	_1286umj5411
	_tywb7n2h7qem
	_alo5thvl26sg
	_drwvzzysye4f
	_73xltggy68p1
	_83gmz8bj7zo6
	_z287cd8rske8
	_vqblvctcaivv
	_z1xlk6oye43d
	_mwkttrhtz9if
	_hhtm9jlelsoj
	_117xnveyxui3
	_ykg3712de6d3
	_meh8g6vtuzy7
	_mnptzy5k688r
	_d2ux7yn9bkka
	_dmfzatt1mbgt
	_orqqfnc3tu1d
	_jk5hwmwqhx08
	_ze4wruk26bdr
	_klktc5z9zdnb
	_a92menhfbjub
	_gqs1hbpoou49
	_45vcn8c9giiw
	_20ask7eisflg
	_qx8ciehqrpjp
	_sxu7mehbcawm
	_unholhpoxkr8
	_sx9u9dlln4ko
	_4ak6lbnz1ueh
	_g94xl98yoz5v
	_5ysm2wcvun14
	_uih1ct3bxjnn
	_wcz2o6nuiqy
	_ik46j622aoo
	_4tgdm7c4e6po
	_cd8abdm6o2c6
	_xrq7bhkxmb2h
	_5obmq4hyo6xq
	_lo3h6t669okt
	_6uu0a0hn3dy9
	_zb2iqo3s08gp
	_woyyufbjs4tj
	_stp8h2om34r
	_duyqgu7kyhuw
	_zh05wljaezn9
	_ez9ap8o3c1sf
	_sw3xa62s9g8h
	_331r391m7hgn
	_dpy6ptu9k7bl
	_k800vwoeumdr
	_v49dhgyy9fgd
	_elyjyjtj68xt
	_e38vogtmvgua
	_pj9go06scx00
	_m58272ntrrdl
	_a2q47a78d6h1
	_qjhnt1hwdbev
	_iyf5pr4bymog
	_2mnkdemw79c5
	_u90ux6hn4msu
	_xloknfpfi7s8
	_rr7ff73il6tg
	_pftsgkl1abvj
	_76vsa06or3uq
	_ymm5rqpy8fxv
	_runge7jvj5cv
	_q7b5su9vu5a5
	_1bucp8xc972s
	_uv4jq59edcmx
	_6vpzabce8mxq
	_6bzbjnvucp4h
	_3b57s6uxgvj
	_tjlthihx38i6
	_d0pkuh99vrgf
	_4mx6rikau54x
	_hw8elx3pbqcc
	_ksp3ekc4o7l7
	_1hhfvdi8ji2e
	Introduction
	The evolution of Unity tools for multiplayer games
	Basic concepts
	Headless servers
	UDP packets

	UDP versus TCP
	Ticks and updates
	Latency

	Other networking terms
	Network synchronization

	Techniques for network synchronization
	Network topologies

	Client-server topology
	Dedicated game server
	Client-hosted listen server

	Distributed authority
	Local or couch multiplayer
	Peer-to-peer (P2P)
	What is an authoritative server?
	Network stack

	Unity networking solutions
	Netcode for GameObjects
	Netcode for Entities
	Unity Transport

	Third-party networking

	Setting up your first Netcode project
	Before you begin
	Sample project setup
	Installing Netcode for GameObjects
	Adding the NetworkManager
	NetworkObjects
	Player NetworkObjects
	Creating a Player NetworkObject
	Multiplayer Play Mode

	Creating your own UI start buttons
	Adding NetworkBehaviour

	Authority and ownership properties
	Sync using a NetworkTransform and NetworkAnimator
	Applying client authority

	Owner authoritative mode components
	Syncing with server authority

	Singleton design pattern

	Network synchronization
	Gameplay mechanic
	Define a NetworkVariable
	Adding an RPC

	Trigger mechanic
	RPCs versus NetworkVariables
	Designing for multiplayer

	Network latency and performance
	Simulating latency
	Unity Transport Debug Simulator
	Network Simulator
	Other network conditioners
	Client-side interpolation
	Client-side prediction and anticipation

	Why server authority
	How client-side prediction works
	Reconciliation and rollback
	Client-side anticipation in Netcode for GameObjects
	Deterministic physics

	Client-side prediction in Netcode for Entities

	Testing and debugging networked games
	Local testing
	Player builds
	Multiplayer Play Mode (MPPM)
	macOS users
	Simulating network conditions
	Testing client connections

	Clients connecting:
	Clients disconnecting:
	Host/Server starting the session:
	Host/Server shutting down:
	Techniques for debugging multiplayer games
	Command line helper

	Multiplayer Services
	Matchmaker
	Lobby
	Relay
	Multiplay Hosting
	Vivox

	Sample projects
and resources
	Resources for Netcode for GameObjects
	Unity Learn: Get started with Netcode for GameObjects
	Bitesize samples
	Boss Room
	Small Scale Competitive Multiplayer template
	VR Multiplayer template
	Resources for Netcode for Entities

	Getting started with Netcode for Entities
	ECS Netcode samples
	ECS Network Racing
	Megacity Metro
	Experimental Multiplayer Services package

	Next steps

	Botón 3:
	Página 6:
	Página 7:
	Página 9:
	Página 22:
	Página 26:
	Página 53:
	Página 60:
	Página 72:
	Página 77:
	Página 81:
	Página 91:

