
© 2024 Unity Technologies

Best practices for
project organization
and version control

 ⟶ E - B O O K

Contents

Introduction. . 5

Source control vs version control . . 6

Foundational concepts. . 7

How version control works. . 7

Why use version control?. . 8

Centralized vs distributed version control 8

Centralized . . 8

Distributed . . 9

Centralized . . 10

Distributed. . 10

Key terms. . 11

Best practices for organizing a Unity project. 13

Project organization. . 13

Folder structure. . 13

Empty folders. . 19

The .meta file. . 20

Naming standards. . 21

Workflow optimization. . 22

Split up your assets . . 22

Presets . . 23

Code standards. . 24

UI Toolkit formatting conventions 27

Services for project organization. 27

Asset Manager. . 27

Build Automation. . 31

Version control systems. . 36

Git. . 36

Perforce (Helix Core) . . 41

Apache Subversion. . 42

Unity Version Control. . 42

VCS comparison. . 45

Setting up Unity to work with version control 46

Editor project settings. . 46

Perforce Helix Core . . 46

UVCS. . 48

Git and other solutions. . 50

What to ignore. . 50

Working with large files. . 51

Best practices for version control . . 53

Commit little, commit often . . 53

Keep commit messages clean. . 54

Avoid indiscriminate commits . . 54

Get the latest. . 55

Know your toolset. . 57

Feature branches and Git Flow. . 58

Pull requests. . 60

Get started with UVCS in Unity 6. . 62

Use UVCS in a Unity project . . 63

Inviting other team members. . 65

Check in Changes. . 67

The UVCS desktop client. . 69

Using Gluon. . 71

UVCS desktop app. . 74

Branches . . 74

Handling conflicts. . 77

Merge rules. . 79

Locking files. 84

Monitoring or removing a repository. 87

Unity support. . 89

Build the foundation for your live game 90

Unity Gaming Services. . 90

Multiplayer . . 90

Community. . 91

Accounts. . 91

Content management. . 91

Crash reporting . . 92

Game economy . . 92

Engagement and analytics. . 92

Unity Grow. . 93

User acquisition. . 93

Monetization. 93

Conclusion. . 94

Additional resources . . 95

© 2024 Unity Technologies 5 of 95 | unity.com

Introduction

Software development becomes a different beast when you move from working on your own
to with a team. Where do you store the project so that every team member has access to it?
What happens if more than one person works on the same file at the same time? Programmers
often understand the concepts behind source control, but what about artists and other
non-technical team members? How can you minimize the amount of support they need from
programmers, so they don’t have to worry about doing something wrong?

Source control, or version control, can be a daunting topic for game developers, especially if
you’re not from a technical background. But it doesn’t need to be that way. There are a number
of tools that integrate with Unity to help your team work effectively with versioning.

This guide explains the key concepts of version control, compares some of the different
version control systems (VCS) available, and provides an introduction to additional Unity
DevOps tools like Unity Asset Manager, engagement and analytics, game economy,
multiplayer services, and more. It provides tips and tricks you can use when setting up your
Unity project to help ensure team collaboration is smooth and efficient. Finally, you’ll pick up
some version control best practices for working successfully in a team.

https://unity.com/releases/lts

© 2024 Unity Technologies 6 of 95 | unity.com

In the beginning of computing, all software development was pure code. Even as 3D graphics
evolved, everything was still described as code. As such, the term “source control” was used
to describe the systems in place to manage the project’s contents, while the term source code
management, or SCM, was given as a label for those tools.

Moving into the modern era of software and game development, we now work with a lot more
than just the source code. 3D model formats, such as FBX, textures, materials, audio files, and
more, mean that SCMs now have to handle more than just text file changes. The term “source
control” no longer covers what we need, and thus “version control system” or VCS, became a
more apt description and is now the common label given to the tools used.

The terms can still be used interchangeably. However, when talking about Unity projects that
often deal with large binary assets, version control and VCS are most accurate, so that’s how
they’ll be referred to throughout the rest of the guide.

Three of the main version control systems that work best with Unity are Unity Version Control
(UVCS), (formerly known as Plastic SCM),1 Git, and Perforce Helix Core. This guide presents
the benefits and shortcomings of these systems when working as a team on a Unity project.

1 Plastic SCM joined the Unity family in 2020, which means that these tools are closely integrated into the
Unity Editor.

Source control vs
version control

https://unity.com/releases/lts
https://blog.plasticscm.com/2020/08/codice-software-is-now-part-of-unity.html

© 2024 Unity Technologies 7 of 95 | unity.com

Foundational concepts

This section covers some of the core concepts of version control. If you don’t know your
“commit” from your “push”, this section will help you understand version control terminology.

How version control works
Version control allows you to keep a historical record of your entire project. It brings
organization to your work and enables teams to iterate efficiently.

Project files are stored in a shared database called a repository, or “repo.” You backup your
project at regular intervals to the repo, and if something goes wrong, you can revert back to
an earlier version of the project.

With a VCS, you can make multiple individual changes and commit them as a single group for
versioning. This commit sits as a point on the timeline of your project, so that if you need to
revert back to a previous version, everything from that commit is undone and restored to the
state it was at the time. You can review and modify each change grouped within a commit or
undo the commit entirely.

With access to the project’s entire history, it’s easier to identify which changes introduced
bugs, restore previously removed features, and easily document changes between your game
or product releases.

What’s more, because version control is typically stored in the cloud or on a distributed
server, it supports your development team’s collaboration from wherever they’re working – an
increasingly important benefit as remote work becomes commonplace.

https://unity.com/releases/lts

© 2024 Unity Technologies 8 of 95 | unity.com

 | Source control vs version control | Foundational concepts | Best practices for organizing a Unity project |

Why use version control?
Aside from the reasons mentioned above, version control is useful for making experimental
changes. You can add a new feature in your local version of the project, and if things don’t
work out, you just revert your changes to go back to working on a clean, functional version of
the project.

You can iterate on experimental ideas, and if you need to help out on a major issue in the main
project, version control allows you to save your changes for a later date. Then you can get
your local version back to the main branch to help out with whatever needs to be worked on.
Once you’re done, you can restore and carry on with the experimental work.

Most version control systems prevent you from accidentally overwriting work that someone
else in your team has done. As you commit your work to the repository, you will also need
to “pull” the latest updates from the repository. This allows you to check that someone else
hasn’t been working on the same file as you. This is also known as the dreaded “merge
conflict,” one of the things that can be scary to people who are not used to version control.
However, merge conflicts can usually be resolved easily once you understand the tools. Unity
Version Control (UVCS) uses smart locks which helps to reduce the risk of merge conflicts by
checking to ensure that locked files on any branch are the latest revision of that file.

Centralized vs distributed version control
For the most part, version control systems fall into one of two categories: centralized or
distributed. Depending on which kind of version control system you work with, some of the
terms outlined below will apply, some won’t, and some may even have a different meaning.
Let’s take a look at the differences between these two categories.

Centralized

The first key difference between centralized and distributed systems is where the repo
resides. Many companies choose the centralized option to keep the servers hosting their
proprietary software on-site. Source control security is often an important factor in choosing
this kind of system. A centralized system doesn’t have to mean on-site servers since the repo
can still be hosted in the cloud, but this setup is less common than in distributed systems.

https://unity.com/releases/lts

© 2024 Unity Technologies 9 of 95 | unity.com

 | Source control vs version control | Foundational concepts | Best practices for organizing a Unity project |

The other key difference between the two approaches is how users deploy their changes to
the repo. Centralized version control is often seen as the more straightforward option. When
working with a centralized repo, changes are fetched from and sent to the repository directly.
This process is called updating from and committing to the repo.

The downside to this setup is that users must be connected to the server to submit any work.
To avoid conflicts, users can lock files for modification. This is known as checking out the file,
and it prevents anyone else from committing changes until the file is checked back in.

In a centralized workflow, a user only ever has the latest version of the project files on their
workstation, and the server holds the project’s entire history.

Distributed

In a distributed workflow, there is still a single location where the repo lives, usually on a cloud
service such as GitHub, but users clone the entire project history to their workstation. This
allows users to work on their own local copy and commit changes quickly since they don’t
need to be connected to a central server. To send those changes so others can access them
later, the user needs to push them to the server and pull any other changes down. However,
they don’t need to be always working with the latest files like on a centralized system.

Working this way allows you to create a group of changesets that perhaps equate to a larger
feature before pushing them up for the rest of your team. In fact, it’s encouraged to commit
little and often, but we will get to those best practices later on.

https://unity.com/releases/lts

© 2024 Unity Technologies 10 of 95 | unity.com

 | Source control vs version control | Foundational concepts | Best practices for organizing a Unity project |

File locking is still available in some distributed workflows, however, it’s less common since
you can handle merges more easily. By pulling the latest changes from the server to your local
project, you can compare anyone else’s changes to your own to be sure there are no conflicts
before pushing your changes to the repo.

While the distributed approach is often preferred, it also has a few disadvantages. Firstly,
having the entire project history on local machines takes up a lot of space, especially for
teams working with binary file types. Git has an option called Large File Storage (LFS), which
converts the history of certain files to text pointers, offloading some of the weight. However,
other files have the entire history, and repos can end up with a load of old or stale test data.
Studios working with small M2 drives may then find the size of the repo gets bloated with old
versions, overloading their drives.

Secondly, as developers don’t have to stay in contact with a central server, they can end up
working in isolation for long periods. Their local version can become quite detached from the
main repository, and when it comes time to merge their changes back in, this may be more
work than they bargained for.

Typical workflow

In brief, here are the steps in a workflow for a centralized system and a distributed one:

Centralized
1.	 Update your working copy with changes

from the server.

2.	 Make your changes.

3.	 Commit your changes to the central
server.

Distributed
1.	 Pull any remote changes into your local

repo.

2.	 Make your changes.

3.	 Commit your changes.

4.	 Perform steps 2 and 3 as many times as
you like.

5.	 Push all commits back to the remote repo.

This guide focuses on three main version control systems: UVCS, Git, and Perforce Helix Core.
A detailed walkthrough of each VCS starts in the section “Version control systems”, but here’s
a brief introduction to each one and the workflow it supports:

	— Unity Version Control or UVCS (both): UVCS is a flexible version control system with
unique interfaces to support programmers and artists alike. It excels at handling large
repos and binary files, and as both a file-based and changeset-based solution, it gives
you the capability to download only the specific files you’re working on, rather than the
entire project build.

	— Git (distributed): This is one of the most popular version control systems around. Git is
open source, free, and flexible. As a platform Git is a command line-only tool. But many
different GUIs have been developed for it, making the system more accessible to users.

https://unity.com/releases/lts
https://unity.com/solutions/version-control
https://git-scm.com/

© 2024 Unity Technologies 11 of 95 | unity.com

 | Source control vs version control | Foundational concepts | Best practices for organizing a Unity project |

There can often be some confusion between Git and GitHub. GitHub is a hosting service for
Git repositories, but you can use Git without using GitHub. That said, as any experienced
developer reading this will know, GitHub is a very popular service because there is a free
version (with some limitations), and it doesn’t require any custom server setups.

	— Perforce Helix Core (centralized): This is an enterprise-level version control system
generally used by large game studios because it features centralized repos that are most
often hosted on their own servers.

Key terms
Here are the terms for some of the key features and processes in a VCS:

Term Explanation

Repository/repo
This is the database of all the changes and edits to your project.
Stored on a server, either on-site or in the cloud, it holds the full
history of the project.

Working copy

This is your local version of the project. Sometimes also called
a checkout or workspace. You make changes to your working
copy, and, when you’re happy with them, commit them to the
repository.

Commit/check in

A commit encodes file modifications. A centralized workflow
sends those changes to the server and is more commonly
called checking in. In a distributed workflow, it adds them to the
changeset that needs to later be pushed to the server.

Pull/update/check out
Pulling or updating retrieves the latest changes available on the
server. Check out is the more common term when working in a
centralized workflow.

Locking

Locking a file prevents it from being edited by another user. You
are telling the server, “I’m working on this; please don’t make any
other changes.” Locking is generally not supported in distributed
workflows.

Clone In a distributed workflow, cloning a repo is how you initially get a
copy of the project and its entire history onto your local machine.

Tags Tags are special notes that can be added to a commit. They are
often used to mark a point in time where a build was made.

Branch

A branch creates a new copy of the codeline, which can then
be worked on in parallel. This allows someone to work on parts
of the project in isolation, for example a new feature, without
affecting the main line of development.

https://unity.com/releases/lts
https://github.com/
https://www.perforce.com/products/helix-core

© 2024 Unity Technologies 12 of 95 | unity.com

 | Source control vs version control | Foundational concepts | Best practices for organizing a Unity project |

Merge

Merging can happen either when a branch is finished and needs
to be merged back into the main line, or even just when two
people make changes around the same time. The two changesets
will need to be compared and merged together to create the new
working copy. Most merges can be handled automatically.

Conflict

A conflict is what happens when merges cannot be handled
automatically. This usually occurs when two people have made
changes to the same lines of code or the same binary file.

Code conflicts can usually be resolved by comparing the text and
working out which changes should be accepted, or even whether
both can be brought together in a way.

For binary files, such as Unity scenes or Prefabs, merging a
conflict becomes a lot trickier. However, sometimes a quick
conversation with the other contributor is the easiest way to
resolve what changes make the most sense to keep.

Pull request

When work on a branch is complete, it’s good practice to open
a pull request. This signals to the rest of your team that work on
that branch is complete and ready to be merged back into the
main line. This system gives team leads and/or seniors a chance
to review the changes before accepting them back into the main
branch.

Head Head refers to the latest commit on your working copy.

Reset/revert Depending on your VCS, reset or revert can be used to discard all
your local changes back to their state at the head.

Index

The Git index is a file that describes all the current changes you
have in your working copy. These changes sit in what’s known as
the staging area, where you can select which changes you want
to add to your next commit.

Git stash

If you have some changes that aren’t ready yet for a commit, but
you need to move onto some different work, you can use a stash
to save those changes in a temporary file and reset your working
copy back to head.

https://unity.com/releases/lts

© 2024 Unity Technologies 13 of 95 | unity.com

Best practices for
organizing a Unity
project

Regardless of which VCS you choose, there are some generally recommended practices that
will help streamline your version control workflow when working in Unity. First, let’s take a look
at some of the different ways your team can work together effectively.

Project organization

Folder structure

Although there is no single way to organize your project, in general, follow these recommendations.

	— Define and document your naming conventions and folder structure as a team. A style
guide and/or project template makes your files easier to find and organize. Pick what
works for your team, and make sure everyone is on board with it.

	— Be consistent with your naming convention. Don’t deviate from your chosen style guide
or template. If you do need to amend your naming rules, parse and rename your affected
assets all at once. In cases where the changes affect a large number of files, consider
automating the update using a script.

	— Don’t use spaces in file and folder names. Use CamelCase as an alternative for spaces.

	— Separate testing or sandbox areas. Create a separate folder for non-production scenes
and experimentation. Subfolders with usernames can divide your work area by team
member.

	— Avoid extra folders at the root level. In general, store your content files within the Assets
folder. Don’t create additional folders at the project’s root level unless it’s absolutely
necessary.

https://unity.com/releases/lts

© 2024 Unity Technologies 14 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

	— Keep your internal assets separate from third-party ones. If you are using assets from
the Asset Store or other plug-ins, odds are they have their own project structure. Keep
your assets separate.

If you find yourself modifying a third-party asset or plug-in for your project, then version
control can really help you out when you need to get the latest update for the plug-in. Once
the update is imported, you can look through the diff to find where your modifications may
have been overwritten and reimplement them.

While there is no set folder structure, here are a couple of examples of how you might set up
your Unity project. These structures are based on splitting up your project by asset type. The
Asset Types manual page describes the most common assets in greater detail. You can use
the Template or Learn projects as an example of organizing your folder structure. While you’re
not limited to these folder names, they should give you a good starting point.

Example 1

Assets
+---Art
| +---Materials
| +---Models
| +---Textures
+---Audio
| +---Music
| \---Sound
+---Code
| +---Scripts # C# scripts
| \---Shaders # Shader files and shader graphs
+---Docs # Wiki, concept art, marketing material
+---Level # Anything related to game design in Unity
| +---Prefabs
| +---Scenes
| \---UI

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/AssetTypes.html

© 2024 Unity Technologies 15 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

Example 2

Assets
+---Art
| +---Materials
| +---Models
| +---Music
| +---Prefabs
| +---Sound
| +---Textures
| +---UI
+---Levels
+---Src
| +---Framework
| \---Shaders

If you download one of the template or starter projects from the Unity Hub, you’ll find that
those projects have their subfolders split up based on asset type, as seen in the image below.

Templates available to download in the Unity Hub

Depending on which template you’ve chosen, you should see subfolders that represent several
common assets. Here is one way to organize by type:

Animations
Animations contain animated motion clips and their controller files.
These can also contain Timeline assets for in-game cinematics or rigging
information for procedural animation.

Audio Sound assets include audio clips as well as the mixers used for blending the
effects and music.

Editor Here you’ll find the scripted tools made for use with the Unity Editor but not
appearing in a target build.

Fonts This folder contains the fonts used in the game.

Materials These assets describe surface shading properties.

https://unity.com/releases/lts

© 2024 Unity Technologies 16 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

Meshes Store models created in an external digital content creation (DCC)
application here.

Particles The particle simulations in Unity, created either with the Built-In Particle
System or Visual Effect Graph.

Prefabs These are reusable GameObjects with prebuilt Components.

Scripts All user-developed code for gameplay appears here.

Scenes Unity stores small, functional portions of your project into Scene assets.
They often correspond to game levels or part of a level.

Settings This can be used for storing render pipeline settings, such as for the High
Definition Render Pipeline (HDRP) and Universal Render Pipeline (URP).

Shaders These programs run on the GPU as part of the graphics pipeline.

Textures
Image files can consist of texture files for materials and surfacing, UI
overlay elements for user interface, and lightmaps to store lighting
information.

ThirdParty

If you have assets from an external source like the Asset Store, keep them
separated from the rest of your project here. This makes updating your
third-party assets and scripts easier.

Third-party assets may have a set structure that cannot be altered.

UI If you’re using UI Toolkit, your UXML and USS files are stored here.

Defining a good project structure in the beginning will
avoid version control issues later. If you move assets
from one folder to another, many VCS will see that as
just deleting one file and adding another, rather than
the file being moved. This loses the history of the
original file.

The sample scene with the URP template includes a
number of asset folders.

UVCS can handle file moves within Unity and
maintains the history of any file that’s moved.
However, it’s essential that when you move a file,
you do it in the Unity Editor so that the .meta file
moves with the asset file.

https://unity.com/releases/lts

© 2024 Unity Technologies 17 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

Tracking file movements

Once you’ve decided on a folder structure for your projects, use an Editor script to reuse the
template and create the same folder structure for all projects moving forward. When it’s placed
in an Editor folder, the script below will create a root folder in Assets matching the “PROJECT_
NAME” variable. Doing this keeps your own work separate from third-party packages.

using UnityEditor;
using UnityEngine;
using System.Collections.Generic;
using System.IO;

public class CreateFolders : EditorWindow {

 private static string projectName = “PROJECT_NAME”;
 [MenuItem(“Assets/Create Default Folders”)]
 private static void SetUpFolders()
 {
 CreateFolders window =
ScriptableObject.CreateInstance<CreateFolders>();
 window.position = new Rect(Screen.width/2, Screen.height/2, 400, 150);
 window.ShowPopup();
 }
 private static void CreateAllFolders()
 {
 List<string> folders = new List<string>
 {
 “Animations”,
 “Audio”,
 “Editor”,
 “Materials”,
 “Meshes”,
 “Prefabs”,
 “Scripts”,

https://unity.com/releases/lts

© 2024 Unity Technologies 18 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

 “Scenes”,
 “Shaders”,
 “Textures”,
 “UI”
 };

 foreach (string folder in folders)
 {
 if (!Directory.Exists(“Assets/” + folder))
 {
 Directory.CreateDirectory(“Assets/” + projectName + “/” + folder);
 }
 }

 List<string> uiFolders = new List<string>
 {
 “Assets”,
 “Fonts”,
 “Icon”
 };

 foreach (string subfolder in uiFolders)
 {
 if (!Directory.Exists(“Assets/” + projectName + “/UI/” + subfolder))
 {
 Directory.CreateDirectory(“Assets/” + projectName + “/UI/” + subfolder);
 }
 }

 AssetDatabase.Refresh();
 }

 void OnGUI()
 {
 EditorGUILayout.LabelField(“Insert the Project name used as the root folder”);
 projectName = EditorGUILayout.TextField(“Project Name: “,projectName);
 this.Repaint();
 GUILayout.Space(70);
 if (GUILayout.Button(“Generate!”)) {
 CreateAllFolders();
 this.Close();
 }
 }
}

https://unity.com/releases/lts

© 2024 Unity Technologies 19 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

Empty folders

Empty folders like those shown in the previous images can present a bit of an issue in version
control – so only create the folders for what you need. With Git and Perforce, empty folders
are ignored by default. If these project folders are set up and someone attempts to commit
them, they’ll be unable to until something is placed in the folder.

Go to menu > Assets > Create Default Folders. Creating empty folders at the start of your project will help keep your teamwork organized and efficient.

Note: A common workaround is to place a “.keep” file inside an empty folder. This is enough
for the folder to then be committed to the repository.

UVCS can handle empty folders. Directories are treated as entities and have a version history
associated with them.

This is a point to note when working in Unity. Unity generates a .meta file for every file in the
project, including folders. With Git and Perforce, a user can easily commit the .meta file for an
empty folder, but the folder itself won’t end up under version control. When another user gets
the latest changes, there will be a .meta file for a folder that doesn’t exist on their machine,
and Unity will then delete the .meta file. UVCS avoids this issue by including empty folders
under version control.

https://unity.com/releases/lts

© 2024 Unity Technologies 20 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

The .meta file

Unity generates a .meta file for every other file inside the project, and while it’s typically
inadvisable to include auto-generated files in version control, the .meta file is a little different.
Visible Meta Files mode should be turned on in the Version Control window (unless you’re
using UVCS or Perforce modes).

Turn on Visible Meta Files when working with Git.

While the .meta file is auto-generated, it also holds a lot of information about the file with
which it’s associated. This is common with assets that have import settings, such as Textures,
meshes, audio clips, etc. When you change any import settings on these files, the changes
are written into the .meta file, not the asset file. This is why you commit the .meta files to your
repository, so everyone works with the same file settings.

https://unity.com/releases/lts

© 2024 Unity Technologies 21 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

Changes to a .meta file when import settings were adjusted on a file

Naming standards

Agreeing on standards doesn’t stop with project folder structure. Setting a naming standard
for GameObjects in a scene or prefabs inside project folders can make things easier for your
team to understand when you end up working in one another’s files.

Though there is no definitive naming standard for GameObjects, consider the following.

Standard Example

Use descriptive names and don’t abbreviate.
Use names that you will remember several
months from now. Consider whether another
person will understand your notation, and choose
names that you can pronounce and remember.
For this reason abbreviations are generally not
recommended.

largeButton, LargeButton, or leftButton

NOT:

lButton

Use Camel case/Pascal case.
Avoid spaces in your object names. Camel case
or Pascal case improve readability (and typing
accuracy according to this study).

OutOfMemoryException,
dateTimeFormat,

NOT:

Outofmemoryexception,
datetimeformat

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Camel_case
http://www.cs.loyola.edu/~binkley/papers/icpc09-clouds.pdf

© 2024 Unity Technologies 22 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

Use underscores (or hyphens) sparingly. Avoid
underscores and hyphens in general. However,
they can be useful in certain circumstances.
Prefixing a name with an underscore puts it
alphabetically first. You can also use underscores
to denote variants of a specific object.

Active States:

EnterButton_Active, EnterButton_
Inactive

Texture Maps:

Foliage_Diffuse, Foliage_Normalmap

Level of Detail:

Building_LOD1, Building_LOD0

Use number suffixes to denote a sequence.
Likewise, don’t suffix with a number if it’s not
part of a list.

For a path, name the nodes:

Node0, Node1, Node2, etc.

Follow the design document naming.

If your design document names
locations like HighSpellTower or
RedDragonLair, use those exact
spellings.

Agreeing on a consistent style across your team can result in a cleaner, more readable and
scalable project. The Unity e-book, Create a C# style guide: Write cleaner code that scales,
provides tips and best practices for naming conventions, formatting, classes, methods,
comments and more. Overall the guide follows Microsoft C# style standards 2, providing a
Unity-specific subset of that, but there is no one “true” method; the Google C# 2 guide is
also a great resource for defining guidelines around naming, formatting, and commenting
conventions.

Workflow optimization

Aside from how and where you keep your assets inside the Assets folder, there are several
design and development choices you can make to help speed up your workflow, especially
when you’re using version control.

Split up your assets
Large, single Unity scenes do not lend themselves well to collaboration. Break your levels into
many smaller scenes so that artists and designers can collaborate better on a single level
while minimizing the risk of conflicts.

At runtime, your project can load scenes additively using SceneManager.LoadSceneAsync
passing the LoadSceneMode.Additive parameter mode.

Additionally, break work up into Prefabs where possible. If you need to make changes later,
you can change the Prefab rather than the scene it’s used in to avoid conflicts with anyone
working on the scene. Prefab changes can often be easier to read when doing a diff under
version control.

https://unity.com/releases/lts
https://unity.com/resources/create-code-c-sharp-style-guide-e-book?isGated=false
https://docs.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions
https://google.github.io/styleguide/csharp-style.html

© 2024 Unity Technologies 23 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

And if you end up with a scene conflict, Unity also has a built-in YAML (a human-readable,
data-serialization language) tool specifically for merging scenes and Prefabs. For more
information, see Smart merge in the Unity documentation.

Presets
Unity presets are predefined configurations that allow you to save and reuse specific settings
across different components, assets, or tools within a project. Creating a Preset lets you copy
the settings of a component or asset, save it as an asset, then apply the same settings to
another item later.

Use Presets to enforce standards or to apply reasonable defaults to new assets. This ensures
consistent standards across your team, so commonly overlooked settings don’t impact your
project’s performance.

 The Preset icon is highlighted here in red.

Click the Preset icon to the top right of the component. Click Save current to… to save the
Preset as an asset. Click one of the available Presets to load a set of values.

In this example, the Presets contain different Import Settings for 2D textures depending on usage (albedo, normal, or utility).

https://unity.com/releases/lts
https://unity.com/blog/engine-platform/understanding-unitys-serialization-language-yaml
https://docs.unity3d.com/6000.0/Documentation/Manual/SmartMerge.html?
https://docs.unity3d.com/6000.0/Documentation/Manual/Presets.html

© 2024 Unity Technologies 24 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

Other handy ways to use Presets include:

	— Create a GameObject with defaults: Drag and drop a Preset asset into the Hierarchy
to create a new GameObject with the corresponding component that includes Preset
values.

	— Associate a specific Type with a Preset: In the Preset Manager (Project Settings >
Preset Manager), specify one or more Presets per type. Creating a new component will
then default to the specified Preset values.

	— Pro tip: Create multiple Presets per type, and rely on the filter to associate the
correct Preset by name.

	— Save and load manager settings: Use Presets for a Manager window so the settings
can be reused. For example, if you plan to reapply the same tags and layers or physics
settings, Presets can reduce setup time for your next project.

Code standards

Coding standards will also help keep your team’s work consistent and make it easier for
developers to swap between different areas of your project. Again, there are no set-in-stone
rules here. You need to decide what is best for your team – but once you’ve decided, stick with it.

As an example, namespaces can help organize your code better. They allow you to separate
modules inside your project and avoid conflicts with third-party assets where class names
may end up repeating.

When using namespaces in your code, break your folder structure up by the namespace for
better organization.

A standard header is also a good practice. Including a standard header in your code template
will help to document the purpose of a class, the date it was created, and even who created
it. All of this is information that could easily get lost in the long history of a project, even when
using version control.

Unity employs a template script to read from whenever you create a new Monobehaviour in
the project. Every time you create a new script or shader, Unity uses a template stored in
%EDITOR_PATH%\Data\Resources\ScriptTemplates:

	— Windows: C:\Program Files\Unity\Editor\Data\Resources\ScriptTemplates

	— Mac: /Applications/Hub/Editor/[version]/Unity/Unity.app/Contents/Resources/
ScriptTemplates

The default Monobehaviour template is this one: 81-C# Script-NewBehaviourScript.cs.txt

https://unity.com/releases/lts

© 2024 Unity Technologies 25 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

There are also templates for shaders, other behavior scripts, and assembly definitions.

For project-specific script templates, create an Assets/ScriptTemplates folder, and copy the
script templates into this folder to override the defaults.

You can also modify the default script templates directly for all projects, but make sure you
backup the originals before making any changes. Each version of Unity has its own template
folder, so when you update to a new version, you need to replace the templates again.

The original 81-C# Script-NewBehaviourScript.cs.txt file looks like this:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

#ROOTNAMESPACEBEGIN#
public class #SCRIPTNAME# : MonoBehaviour
{
 // Start is called before the first frame update
 void Start()
 {
 #NOTRIM#
 }

 // Update is called once per frame
 void Update()
 {
 #NOTRIM#
 }
}
#ROOTNAMESPACEEND#

There are two keywords that may be helpful:

	— #SCRIPTNAME# indicates the filename entered or the default filename (for example,
NewBehaviourScript).

	— #NOTRIM# ensures that the brackets contain a line of whitespace.

You can also use your own keywords and replace them with an Editor script implementing the
OnWillCreateAsset method.

https://unity.com/releases/lts

© 2024 Unity Technologies 26 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

// /*---
// ---
// Creation Date: #DATETIME#
// Author: #DEVELOPER#
// Description: #PROJECTNAME#
// ---
// ---*/

using UnityEngine;
using UnityEditor;

public class KeywordReplace : UnityEditor.AssetModificationProcessor {

 public static void OnWillCreateAsset (string path)
 {
 path = path.Replace(“.meta”, “”);
 int index = path.LastIndexOf(“.”);
 if (index < 0)
 return;

 string file = path.Substring(index);
 if (file != “.cs” && file != “.js” && file != “.boo”)
 return;

 index = Application.dataPath.LastIndexOf(“Assets”);
 path = Application.dataPath.Substring(0, index) + path;
 if (!System.IO.File.Exists(path))
 return;

 string fileContent = System.IO.File.ReadAllText(path);

 fileContent = fileContent.Replace(“#CREATIONDATE#”, System.DateTime.Today.ToString(“dd/MM/
yy”) + “”);
 fileContent = fileContent.Replace(“#PROJECTNAME#”, PlayerSettings.productName);
 fileContent = fileContent.Replace(“#DEVELOPER#”, System.Environment.UserName);

 System.IO.File.WriteAllText(path, fileContent);
 AssetDatabase.Refresh();
 }
}

You can also use your own keywords and replace them with an Editor script implementing the
OnWillCreateAsset method.

https://unity.com/releases/lts

© 2024 Unity Technologies 27 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

UI Toolkit formatting conventions

UI Toolkit uses UXML code. As it’s inspired by standard web technologies, UI Toolkit uses the
kebab-case (also known as dash-case or lisp-case) for naming classes, the same convention
used in CSS-related styling systems.

Just as with classes, HTML (and by extension UXML) typically uses kebab-case (lowercase
with dashes) for ID names. Therefore, names like my-element-id would be more standard.

However, it’s recommended that the ID names be specific and descriptive to easily identify the
element’s purpose. For example, submit-button or main-nav-container, logo-image etc.

Recommended Not recommended

Classes .menu-bar-blue ButtonBlue

Visual Element IDs main-nav-image

Recommended naming conventions in UXML

The main reasons for using kebab style include:

	— CSS selectors are case-insensitive, so using Camel case or Pascal case (like .buttonBlue
or .ButtonBlue) can lead to confusion.

	— The HTML specification recommends making attribute names all lowercase, meaning
.button-blue and not .buttonBlue or .ButtonBlue.

	— Kebab case is easy to read and write when multiple words are involved.

Whatever naming convention you choose to go with, it’s important to be consistent across
your codebase. Consistent naming conventions across all types of scripts leads to cleaner
code and makes it easier to access and modify by all team members.

Services for project organization

Asset Manager

The Unity Asset Manager is Unity’s extensible, cloud-based digital asset management (DAM)
solution that lets you increase discoverability, reuse, and ROI of content across your organization.
Asset Manager lets you index content from Unity projects using cloud storage, making asset
discovery easy for entire teams even when based in different locations. It’s key features include:

	— Better asset management

	— Intuitive browsing and discovery

	— Essential integrations with creative tools

	— Lifecycle management

	— Role-based permissions

	— Flexibility and extensibility

https://unity.com/releases/lts
https://unity.com/products/asset-manager

© 2024 Unity Technologies 28 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

You will find a collection of free materials and textures and demos available through the
dashboard when logging into Unity Cloud. Open the Unity Assets sub section to download
these into your projects.

Free materials and textures on Unity Cloud in the Unity Assets section

Inside Unity, you can drag files from your current project into the Asset Manager window to
upload them to the cloud. Those files are then available to any of your other projects that use
Asset Manager as well as to team members connected to your project using UVCS.

Drag assets into the Upload tab to upload to the cloud.

https://unity.com/releases/lts

© 2024 Unity Technologies 29 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

You can then import files into other projects directly from the Asset Manager window, making
this system easy to use and a comprehensive archive of all your project assets.

Click import to download and import the files into your project.

Tags are auto generated to enable
quick search when you have lots of
assets. The assets are also linked to
projects, so you can limit your search
to assets that belong to a specific
project or artist.

Auto-generated tags make searching for assets quick and easy.

https://unity.com/releases/lts

© 2024 Unity Technologies 30 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

Assets can be edited in the Unity
Cloud. Add custom thumbnails,
extra image previews, more tags,
and comments.

The status of the model can
be changed on the Cloud to let
others know if the asset is in draft,
in review, approved, rejected,
published, or withdrawn. Adding
a comment allows you to include
further details about changes. The
status of the asset will then be
visible in the Asset Manager window
in Unity.

Edit assets to add extra image previews and tags.

Change an asset’s status.

https://unity.com/releases/lts

© 2024 Unity Technologies 31 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

Team members always have access to the latest version, reducing issues when working with
asset iterations.

Asset Manager works with UVCS by enabling the integration on the Cloud.

Integrate Asset Manager to UVCS to synchronize the data.

Any modifications made through UVCS will automatically synchronize with Unity Asset
Manager, preventing redundant content creation within your team.

Learn more about the benefits of Unity Asset Manager here.

You can also watch this Asset Manager tutorial on Unity Learn.

Build Automation

Build automation is an integral part of any DevOps strategy. You can run builds on the cloud as
well as run builds simultaneously for all your target platforms. Instead of waiting for builds to
complete sequentially on your device you can spend that time creating your project.

In the Unity Cloud dashboard you can set up as many build targets as you like from the
Configurations section.

Click Quick target setup to create a Build target (alternatively, you can click Target setup if you want to configure more advanced options).

https://unity.com/releases/lts
https://unity.com/products/asset-manager
https://learn.unity.com/tutorial/unity-asset-manager-guide#

© 2024 Unity Technologies 32 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

Choose a platform to build for. You can set up numerous build targets for each platform.

Target platforms to build for

You can build from any branch, and set up multiple targets for each branch. You can also
select specific versions of Unity.

Choose a branch to create the build from.

https://unity.com/releases/lts

© 2024 Unity Technologies 33 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

Note: Windows 11 in the Builder operating system, at the time of writing, offers 200 free
minutes of build time per month.

You can then set up a schedule. You can either build once to test your progress or set up a
repeating schedule. The example below shows a daily schedule that will produce a build at
9.45 pm so that the latest game build is available every morning to check for any issues or
bugs. You will receive an email message after completion of the build to indicate its status,
whether it was a success or a fail.

Create a schedule for your builds

From the configurations section you can click Build next to your setup to build immediately.
You can also pause or delete a build configuration.

Disable or delete a build schedule.

https://unity.com/releases/lts

© 2024 Unity Technologies 34 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

In the Build History section on the Build Automation dashboard, you can check the results of
your builds. If any of them have failed, you can troubleshoot the failure by checking the logs.

Build history in the Cloud

You can download, share, or delete builds from the cloud.

Download, share or delete builds.

https://unity.com/releases/lts

© 2024 Unity Technologies 35 of 95 | unity.com

| Foundational concepts | Best practices for organizing a Unity project | Version control systems |

Set up integrations if you would like messages to be sent to other applications such as Discord
or Slack after the completion of a build.

Go to Administration then Project Integrations on the Cloud and click on New Integration.

Add new integrations via Administration > Project Integrations.

Choose the application/s you would like to use. Now messages will be sent via those
applications to inform team members.

Learn more about Unity Build Automation.

https://unity.com/releases/lts
https://unity.com/solutions/ci-cd

© 2024 Unity Technologies 36 of 95 | unity.com

Version control
systems

Now that you’re familiar with some of the key terms and concepts in version control, project
organization, and naming conventions best practices, it’s time to introduce some of the key
players. Of course, no one solution is best for everyone. There are many things to consider
when choosing which VCS to use in your team. Hopefully, by the end of this book, you’ll have
all the information you need to make that decision.

Git
Open source, free, and flexible, Git is one of the most popular version control systems around.
However, as a distributed setup it can be daunting to non-technical users.

Developed in 2005 by Linus Torvalds to control the Linux kernel development, it’s remained
well-maintained and open source since. Git as a platform is a command line-only tool. But
many different GUIs have been developed for it, making the system more accessible to users.

There can often be some confusion between Git and GitHub. GitHub is a hosting service for
Git repositories, but you can use Git without using GitHub. That said, GitHub is a very popular
service because there is a free version (with some limitations), and it doesn’t require any
custom server setups.

https://unity.com/releases/lts
https://unity.com/resources/create-code-c-sharp-style-guide-e-book?isGated=false
https://git-scm.com/
https://github.com/

© 2024 Unity Technologies 37 of 95 | unity.com

| Best practices for organizing a Unity project | Version control systems | Best practices for version control |

GitHub

Some popular Git GUI clients include:

Fork: It’s a fast and friendly GUI that you can download for a free evaluation.

Fork

https://unity.com/releases/lts
https://git-fork.com/

© 2024 Unity Technologies 38 of 95 | unity.com

| Best practices for organizing a Unity project | Version control systems | Best practices for version control |

GitKraken: This offers a more visual and accessible way of working with Git with an intuitive UI
as well as the flexibility to switch between a GUI or a CLI terminal.

GitKraken

Microsoft Visual Studio Code: VS Code has source control integration built in, and with all the
extensions available, you can avoid using a separate program altogether.

Visual Studio Code

https://unity.com/releases/lts
https://www.gitkraken.com/
https://code.visualstudio.com/

© 2024 Unity Technologies 39 of 95 | unity.com

| Best practices for organizing a Unity project | Version control systems | Best practices for version control |

Microsoft Visual Studio: As with VS Code, Visual Studio also has Git controls built in and
includes a GitHub extension.

Visual Studio

SourceTree: Part of the Atlassian product group SourceTree is a free Git client for Windows
and Mac that can also help you visualize and manage your Git repositories easily.

SourceTree

https://unity.com/releases/lts
https://visualstudio.microsoft.com/
https://marketplace.visualstudio.com/items?itemName=GitHub.GitHubExtensionforVisualStudio
https://www.sourcetreeapp.com/

© 2024 Unity Technologies 40 of 95 | unity.com

| Best practices for organizing a Unity project | Version control systems | Best practices for version control |

Sublime Merge: This system offers tools for speeding up code reviews with side-by-side diffs
and syntax highlighting. It’s a lightweight, high-performance client.

Sublime Merge

Git is generally considered strong in branching and merging capabilities, but it can’t handle
large binary files as effectively as other solutions on the market. Git Large File Storage (LFS)
goes some way to rectifying this.

Since Git is a distributed client, the entire repository and complete history is on the
developer’s machine. This makes actions such as switching branches or reverting back to a
point in history extremely quick. If you’re working on a large project with multiple features and
release branches, a Git workflow can save countless hours.

Unity has released their C# editor and engine code to the public on GitHub. This is
incredibly useful when you need to know how some functions work or how to replicate a
feature of the Editor inside your own project.

GitHub also has its own Git GUI, GitHub Desktop. When working in Unity, you can also use the
GitHub for Unity package to bring the Git tools directly into the Unity Editor.

As mentioned, GitHub isn’t the only hosting service available for your Git projects. You can
also use Bitbucket (from Atlassian) or GitLab, which have many more DevOps features
available to them, or one of the many other hosting services available.

See this talk from Unite Now 2020 on how to get started with Github, GitKraken and Unity.

https://unity.com/releases/lts
https://www.sublimemerge.com/
https://github.com/Unity-Technologies/UnityCsReference
https://desktop.github.com/
https://unity.github.com/
https://bitbucket.org/product
https://about.gitlab.com/
https://www.youtube.com/watch?v=ISW2nS_v3Ic&t=753s

© 2024 Unity Technologies 41 of 95 | unity.com

| Best practices for organizing a Unity project | Version control systems | Best practices for version control |

Perforce (Helix Core)

Helix Core is an enterprise-level version control system generally used by large game
studios. These studios use Perforce because it features centralized repos that are most
often hosted on their own servers. It does not feature visual repos, so its adoption might be
more challenging for non-technical developers, but in larger studios there will be DevOps and
Release Engineers to help manage the code base. Plus, as an enterprise solution, it includes a
global support team.

Helix Core can also be used by small teams and you can still deploy to the cloud through
solutions like Amazon AWS or Microsoft Azure.

 Helix Core P4V interface

Helix Core can handle large files and there’s a built-in Unity Editor integration that’s covered in
a later section.

To learn more about integrating your Unity workflow with Helix Core, check out this Perforce
blog post.

https://unity.com/releases/lts
https://www.perforce.com/products/helix-core
https://www.perforce.com/products/helix-core/install-enhanced-studio-pack-aws
https://www.perforce.com/products/helix-core/install-enhanced-studio-pack-azure
https://www.perforce.com/blog/vcs/how-to-use-unity-version-control
https://www.perforce.com/blog/vcs/how-to-use-unity-version-control

© 2024 Unity Technologies 42 of 95 | unity.com

| Best practices for organizing a Unity project | Version control systems | Best practices for version control |

Apache Subversion
Like Git, Apache Subversion (known as SVN) is a free and open-source version control
system. Unlike Git, it’s a centralized VCS that can handle large binary files. However, it’s still a
command line system that requires one of the many third-party GUI clients to be a bit more
user friendly. One such client is SmartSVN.

SmartSVN GUI

Before Git LFS, SVN was a popular choice when working in Unity. As a centralized solution, it
was simpler to work with and, as mentioned, better for working with large files. Where SVN
falls behind the other tools is when you start to use branches and need to merge between
them. Merging in SVN has many pains, especially when it comes to conflicts – or even false
conflicts – between files. A merge operation that would take minutes in another VCS may take
hours to go through manually in SVN.

For more information on setting up Unity to work with SVN, check out the Unity documentation.

Unity Version Control

Unity Version Control (UVCS) is a flexible version control system with unique interfaces to
support programmers and artists alike. It excels at handling large repos and binary files, and
as both a file-based and changeset-based solution, it gives you the capability to download
only the specific files you’re working on, rather than the entire project build.

There are three ways to access UVCS: via multiple applications and repositories through the
UVCS desktop client, by adding it to your projects through the Unity Hub, or accessing the
repository on Unity cloud via your web browser. See the section “Get started with UVCS in
Unity 6” for more information on how to set it up.

Small teams of up to three users can sign up for free and at the time of writing, get up to 5GB
of cloud storage, along with access to the Version Control software, including Gluon.

https://unity.com/releases/lts
https://subversion.apache.org/
https://www.smartsvn.com/download/
https://docs.unity3d.com/6000.0/Documentation/Manual/SmartMerge.html
https://unity.com/products/plastic-scm?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook
https://docs.unity.com/ugs/en-us/manual/devops/manual/version-control-desktop-client
https://learn.unity.com/tutorial/how-to-use-the-unity-hub?courseId=6401bbfcedbc2a22aaebd59b
https://unity.com/solutions/version-control-artists

© 2024 Unity Technologies 43 of 95 | unity.com

| Best practices for organizing a Unity project | Version control systems | Best practices for version control |

Gluon is a slimline client designed to let artists work like artists, not programmers. It allows you
to pick only the files that you’re going to work on and check them out from the server, locking
them from being modified by anyone else. Once you complete your work, you check the files
back in. The Gluon GUI removes the more complex concepts that work better for programmers
than for other, less technical users.

Gluon offers a workflow especially designed for artists, making it easy to preview files and history as well as to check in changes.

For artists, both UVCS and Gluon include ways to diff images. The image diff tool lets you
compare two versions of the same file visually, a feature that many other systems don’t offer.

A diff viewer in Swipe mode: Go from one version to the other by dragging the swipe control, a useful feature for tracking image evolution

https://unity.com/releases/lts

© 2024 Unity Technologies 44 of 95 | unity.com

| Best practices for organizing a Unity project | Version control systems | Best practices for version control |

The standard UVCS GUI client has all the features they would be looking for and more for the
programming team. The GUI has an interactive visual Branch Explorer that shows the true
relationships of all the branches in a project. There is also a built-in Code Review system that
you can use to request the review of your work from other groups or team members.

The branch explorer visualizes the merge structure of the project. It evolves horizontally from left to right.

One of the key strengths of UVCS is that it has the flexibility to be configured for a distributed
or centralized workflow. In fully distributed mode, developers work with a repository on their
local machine, checking in, branching, and merging with ease. Developers will then push and
pull changes to the server to share them when ready.

In centralized mode, users check out and check in their changes directly to the server so
everyone is working on the latest changes. However, as development teams have grown into
global organizations, everyone communicating with one central server isn’t always beneficial.
UVCS can also be configured to work in a multi-site system. In this system, servers are set up at
each site, so teams can check in to their local server, keeping their workflow fast and hard drives
happy. Then, the distributed servers communicate with each other to a central or cloud server.

See the section Get started with UVCS in Unity 6, along with this Unity Learn quick-start
tutorial, for the steps to setting up UVCS in Unity.

https://unity.com/releases/lts
https://learn.unity.com/tutorial/unity-version-control-guide
https://learn.unity.com/tutorial/unity-version-control-guide

© 2024 Unity Technologies 45 of 95 | unity.com

| Best practices for organizing a Unity project | Version control systems | Best practices for version control |

VCS comparison

UVCS Git Perforce Subversion

Flexibility

Work centralized
Checkin only, no push/
pull

Work distributed
Push/pull + local repo

Binaries

Large repos

Large files

Lock files to avoid
merging

GUI

Visualizes your repos
(so you don’t need a
PhD in branching)

User-friendly GUIs

Artist-friendly GUI
and workflow

Workflow Creates effective task
branches

Merge

Detects merges
between branches

Provides diff and
three-way merge
tools

Tools help you
understand the merge

Good merging
renames, moved files,
directories, refactors

https://unity.com/releases/lts

© 2024 Unity Technologies 46 of 95 | unity.com

| Best practices for organizing a Unity project | Version control systems | Best practices for version control |

Setting up Unity to work with version control
This section will help you set up Unity to work with Git, Perforce, or UVCS, depending on your
preference. By understanding some of the key workflows for each solution, you can make an
informed decision about which system will best suit your team.

Editor project settings

Perforce Helix Core
Unity Editor integration is available with most version control systems, and Perforce Helix
Core integration is built into the Editor. You only need to enable it via Edit > Project Settings >
Version Control. Set the Mode to Perforce, and fill in the information of your workspace and
server settings.

Setting up Perforce Helix Control for a project

Cloud

Can host repos in the
cloud

Cloud hosting is good
with large repos

DIFF

Can diff code moved
across files

Shows you the history
of a method

Enterprise Support

https://unity.com/releases/lts

© 2024 Unity Technologies 47 of 95 | unity.com

| Best practices for organizing a Unity project | Version control systems | Best practices for version control |

Once this is enabled, you will see that files are now considered “Under Version Control,” with
the option to check them out.

Once a file is checked out, you can lock, unlock, submit, or revert the file. Choosing to submit
will bring up a changeset dialog for you to add your commit message before submitting it into
the repository.

 Changeset dialog box

Use the Helix P4V interface to view the project history.

 View the project history.

For more on getting started with Perforce Helix Core and Unity, check out the Perforce blog.

https://unity.com/releases/lts
https://www.perforce.com/blog/vcs/how-to-use-unity-version-control
https://www.perforce.com/blog/vcs/how-to-use-unity-version-control

© 2024 Unity Technologies 48 of 95 | unity.com

| Best practices for organizing a Unity project | Version control systems | Best practices for version control |

UVCS
UVCS is integrated with the Unity Editor, making it easy to get started and simplify workflows.
When you create a new Unity project in the Hub, you can immediately integrate Unity VCS by
selecting the Use Unity Version Control checkbox.

To connect UVCS to an existing project in the Editor, open Window > Unity Version Control.
The tab will appear in the Project window.

UVCS in the Project Settings

UVCS will feel familiar to Unity users, and simplifies workflows by eliminating the need for an
additional client. Files can be added, checked out, reverted, checked in, or submitted, directly
from the Editor.

https://unity.com/releases/lts

© 2024 Unity Technologies 49 of 95 | unity.com

| Best practices for organizing a Unity project | Version control systems | Best practices for version control |

 Working with files in UVCS from the Unity Editor

 Checking in a file

UVCS also has the advantage of having a Changesets tab available in the Unity Editor via
Window > Unity Version Control.

 Pending changes and Changesets tabs

https://unity.com/releases/lts

© 2024 Unity Technologies 50 of 95 | unity.com

| Best practices for organizing a Unity project | Version control systems | Best practices for version control |

For more information on setting up Version Control in Unity, check out the documentation.

Git and other solutions
For all other VCS, open the Edit > Project Settings > Version Control window, and select
Visible Meta Files from the dropdown menu. There are no other options here, but meta files
must be visible in order for version control systems to detect them (see previous chapter on
Meta Files).

What to ignore

When working with a Unity project, or any project for that matter, only files that cannot be
generated should be placed under version control.

For Unity projects, that means only files in the Assets and Project Settings folders should be
committed to your repository. Unity can automatically recreate all the other folders. Under no
circumstance should you commit the Library folder, since this folder can get very large and
Unity will recreate it when launching the Editor if it doesn’t exist.

	— UVCS automatically selects the appropriate folders and files to place under version
control when set up from the Unity Editor. There is a list that is saved in the `ignore.
conf` file at the root of the project that describes which files are ignored. To learn more
about setting up the “ignore.conf” file, check out this blog post.

	— With Perforce, you need to explicitly add the Assets and Project Settings folders to your
depot.

	— Git requires a .gitignore file to indicate what files should never be included. Depending
on your Git GUI client, you can select a template when creating a repository, or this can
be done through GitHub if you set the hosting up first. Alternatively, a template can be
downloaded here.

You should also avoid committing things like .exe or .apk files. Additionally, gradle and xcode
projects built from your Unity project should not be added to the repository.

A small exception to this rule is if you were to set up automated build processes for your
Gradle or Xcode projects, but then they would be typically committed to a repository of
their own.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/Versioncontrolintegration.html
https://blog.plasticscm.com/2020/01/definitive-ignoreconf-for-unity-projects.html
https://github.com/github/gitignore/blob/master/Unity.gitignore

© 2024 Unity Technologies 51 of 95 | unity.com

| Best practices for organizing a Unity project | Version control systems | Best practices for version control |

 Files can be added to the ignored list directly from the Unity Editor when using UVCS.

Working with large files

Unity projects are made up of a lot more than just code. In fact, scripts can often be heavily
outnumbered by other asset files in a Unity project. These assets are stored as binary files:
Textures, models, Prefabs, audio clips, timelines, and so on. This results in two things:

	— They can be hard to compare between revisions.

	— The diff cannot be described, so the whole file is written when a change is pushed to the
repo.

Again, in a distributed environment, the entire project history is available on a user’s local
machine. Now if you have a history of large files that have had many changes over a long
time, then you will have that many copies of the file stored on your machine. This can quickly
consume a large portion of your hard drive space!

This is one of main reasons that historically, teams preferred a centralized workflow. This way,
large historical versions of binary files would only live on a central server, with individual users
only accessing the latest version on their machines.

Both Perforce and UVCS are centralized systems that can handle large files well. UVCS also
gives you the option to work in a distributed pipeline, and large file sizes is the tradeoff that
you need to consider when choosing between these options.

https://unity.com/releases/lts

© 2024 Unity Technologies 52 of 95 | unity.com

| Best practices for organizing a Unity project | Version control systems | Best practices for version control |

Another feature of UVCS is the Dynamic Workspace, which relies on a virtual filesystem. This
means that the Dynamic Workspace downloads files on demand – so, while you see everything
in your workspace, in reality not everything is downloaded.

Git, being distributed, can struggle with large files. Be sure to also include Git LFS if you will
be working with large files. Git LFS replaces your large files in the .git folder with text pointers
while storing the actual asset on a server such as GitHub.

https://unity.com/releases/lts
https://blog.plasticscm.com/2021/07/dynamic-workspaces-alpha-for-windows.html
https://git-lfs.github.com/

© 2024 Unity Technologies 53 of 95 | unity.com

Best practices for
version control

Regardless of which VCS you use, many best practices can help your team work more
effectively. Every team has different needs, so every practice won’t fit every team.

These tips come from the Unity Enterprise Support Team, who are helping to optimize real-
world projects for some of the biggest studios out there.

Commit little, commit often
This is by far the easiest change you can make to your workflow, yet it’s the one that some
developers struggle with the most. When working with other project management tools, it’s
likely you have already broken down the work into small, manageable tasks. Commits should
be exactly the same.

A single commit should only relate to one task or ticket, unless a single line of code magically
fixes several bugs. If you are working on a larger feature, break it down into smaller tasks, and
make commits for those tasks. We’ll dive into feature branches later.

The biggest advantage of using smaller commits is that when something does go wrong, you
will find the change much more easily and can revert the negative change without affecting
any other positive changes.

https://unity.com/releases/lts
https://unity.com/solutions/accelerate-solutions-games

© 2024 Unity Technologies 54 of 95 | unity.com

| Version control systems | Best practices for version control | Get started with UVCS in Unity 6 |

Keep commit messages clean
Commit messages describe the history of your project. It’s much easier to find the change that
added high-score tables to your game if its commit message says “Added high score tables to
the menu” and not “Menu updated!”

When working with a task ticketing system like JIRA or GitLab, it’s even better to include
a ticket number in your commit. Many systems can be set up to work together with smart
commits, in which you can actually reference tickets and change their status from your commit
message.

For example, the commit “JRA-123 #close #comment task completed” would set JIRA ticket
JRA-123 to closed, leaving the comment “task completed” on the ticket.

For more on setting this workflow up, see the documentation in JIRA or the Pivotal Tracker
service in GitLab.

Avoid indiscriminate commits
The only time “commit -a” (the git command for “commit all changes”) or any of its
counterparts should be used is with the first commit of a project. Usually, this is when the only
files in the project are README.md.

A commit should only ever include files that are related to the change you are committing to
the repo. Particular care should be taken when working with Unity projects, and some changes
may result in several files being marked as changed, such as scenes, prefabs, or sprite atlases,
even though you didn’t intend to make any changes to them.

If you accidentally commit a change to a scene that someone else is working on, that could
cause a headache for them when they go to commit their changes and find they need to
merge your changes first.

This is one of the most common mistakes that people who are new to version control will
make. It’s important to understand that you should only commit what you have changed in the
project. To learn more, check out this blog post on how to speed up your workflow.

https://unity.com/releases/lts
https://support.atlassian.com/jira-software-cloud/docs/process-issues-with-smart-commits/
https://docs.gitlab.com/ee/user/project/integrations/pivotal_tracker.html#pivotal-tracker-service
https://docs.gitlab.com/ee/user/project/integrations/pivotal_tracker.html#pivotal-tracker-service
https://docs.gitlab.com/ee/user/project/integrations/pivotal_tracker.html#pivotal-tracker-service
https://blog.plasticscm.com/2018/10/checkin-with-reviewers-in-mind-how-to-fix-pull-requests.html

© 2024 Unity Technologies 55 of 95 | unity.com

| Version control systems | Best practices for version control | Get started with UVCS in Unity 6 |

Get the latest
As often as it makes sense, pull the latest changes from the repo into your working copy. It’s
not good to work off in isolation, as this only increases the likelihood of merge conflicts. A
typical daily workflow in each system would be something like this.

Git Perforce

	— git pull

	— Then as many times as you like:

	— Make edits in your working copy.

	— git commit your changes.

	— git pull the latest changes.

	— Once you are happy with your changeset
of commits:

	— git pull once more.

	— git push to send your commits to
the repo.

	— Get latest

	— Check out files to work on

	— Make edits

	— Submit changes

 Saving changes to a new changelist in P4V

https://unity.com/releases/lts

© 2024 Unity Technologies 56 of 95 | unity.com

| Version control systems | Best practices for version control | Get started with UVCS in Unity 6 |

 Submitting a changeset in P4V

UVCS workflows are a little different because you can work in centralized, distributed, or
multi-site configurations.

UVCS (centralized) UVCS (distributed) UVCS (multi-site)

	— Sync repositories

	— Pull visible

	— Check out files to work
on

	— Make edits

	— Check in changes

	— Sync repositories

	— Push visible

	— Pull changes from the
server

	— Check in changes to
your local copy

	— Pull any new changes

	— Push your changes
back up to the server

	— A hybrid of the two,
depending on your
setup

Multi-site configurations can be tailored to custom needs, with each user working in either a
centralized or distributed workflow.

https://unity.com/releases/lts

© 2024 Unity Technologies 57 of 95 | unity.com

| Version control systems | Best practices for version control | Get started with UVCS in Unity 6 |

Consider the following example of two teams:

	— Each team has an on-site server.

	— Team members at both sites check in locally or distributed but benefit from the speed of
a close on site server.

	— Servers push/pull between one another to keep fully or partially in sync.

 Multi-site UVCS configuration

Know your toolset
Whichever VCS your team chooses to work with, make sure that the team is comfortable using
it and understands the tools at their disposal including visual clients.

If you’re working with Git, not everyone needs to use the same GUI client. But make sure that
everyone is comfortable with the commit > pull > push workflow, and that they know how to
commit only the files they need.

If you’re working with UVCS, let your artists get comfortable using Gluon to simplify their
workflow. Gluon lets you decide which files you want to work on and only download those,
removing the need to download and manage the entire project. It allows you to lock a file to
prevent others from working on it, and, once you’re finished, users can submit files back to the
repository and unlock them again.

https://unity.com/releases/lts
https://unity.com/solutions/version-control-artists
https://www.plasticscm.com/gluon?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook

© 2024 Unity Technologies 58 of 95 | unity.com

| Version control systems | Best practices for version control | Get started with UVCS in Unity 6 |

 Gluon in UVCS

If you are working with Perforce Helix Core, use the built-in Unity Editor tools for managing
version control directly from the Editor. This is incredibly useful, both for artists or for general
handling of Unity asset files such as scenes, Prefabs, and so on. You can check out assets
for modification in the Editor, make your changes, and then check them back in without even
leaving Unity.

Feature branches and Git Flow
When you’re working on a long-standing project with multiple release cycles, feature
branching is hugely beneficial to your workflow. Often, teams work out of the same branch of
a repo that would likely be called trunk, master, or main. When you do this, your entire project
moves along the same timeline.

 Development along the main branch in UVCS

https://unity.com/releases/lts

© 2024 Unity Technologies 59 of 95 | unity.com

| Version control systems | Best practices for version control | Get started with UVCS in Unity 6 |

However, it can be beneficial to split the work off into several branches to work more
effectively as a team.

In Git, a specific workflow called Git Flow focuses on using different branches for features, bug
fixes, and releases. A developer starts out work on a new feature inside an isolated branch,
and when they’re finished, it’s merged back into the main branch. Meanwhile, someone else
may have had to do a hotfix on the previous release, fixed a bug, and released a new version
safely, without any of the features still under development being included.

 A Git Flow workflow allows for easier release management.

UVCS also features task branches. For this pattern, you create a new branch for every task
that you track. While in Git Flow, we use feature branches to develop complete, sometimes
large, features, task branches in UVCS are meant to be short-lived. If a task takes more than a
handful of commits to implement, odds are it could be broken down into smaller tasks.

https://unity.com/releases/lts
https://docs.plasticscm.com/book/#_one_task_one_branch

© 2024 Unity Technologies 60 of 95 | unity.com

| Version control systems | Best practices for version control | Get started with UVCS in Unity 6 |

 UVCS branch per task pattern

Perforce Helix Core uses a system called Streams to facilitate this style of workflow. When
creating a depot to work in, you need to set it up as a stream depot type. Then, you can use
the Stream Graph view to create new streams. Every stream other than the mainline stream
will need to have a parent stream, so changes can be copied back up-stream.

Pull requests
Once you’ve completed work on a feature branch, it’s a good practice to use pull requests
to get your changes back into the main stream of the repo. Pull requests are created by the
developers of the feature or task, and it’s usually the responsibility of a senior developer or
DevOps to review the changes before accepting them into the mainline.

 A closed pull request on GitHub

https://unity.com/releases/lts

© 2024 Unity Technologies 61 of 95 | unity.com

| Version control systems | Best practices for version control | Get started with UVCS in Unity 6 |

UVCS and Perforce both have automated tools to help manage merging branches back into
the mainline. UVCS does this with the help of Mergebot, which automatically merges branches
of a repo once they’ve been reviewed and passed validation. Perforce has an additional
platform, Helix Swarm, for managing code reviews that can also be set up with automated
testing.

 UVCS code reviews are included in the GUI.

https://unity.com/releases/lts
https://unity.com/solutions/version-control-programmers
https://www.perforce.com/products/helix-swarm

© 2024 Unity Technologies 62 of 95 | unity.com

Get started with UVCS
in Unity 6

The Unity DevOps offering comprises UVCS and Build Automation. UVCS is free for up to three
(3) team members (seats) and up to 5GB of data per month. After that, pricing depends on
your monthly active users and total cloud storage. UVCS sends warning emails to the UVCS
organization owner when you reach 50%, 75%, and 90% of your usage allowance for any of the
UVCS services so it’s easy for you to keep track of your usage.

See the Unity Cloud pricing plans page for more information or, sign into the Unity Cloud
dashboard and go to the DevOps dashboard “About” page.

There are three ways to access UVCS: via multiple applications and repositories through the
UVCS desktop client, by adding it to your projects through the Unity Hub, or accessing the
repository on Unity cloud via your web browser.

https://unity.com/releases/lts
https://unity.com/products/unity-devops
https://unity.com/products/compare-plans/unity-cloud
https://cloud.unity.com/home/organizations/default/devops/about
https://docs.unity.com/ugs/en-us/manual/devops/manual/version-control-desktop-client
https://learn.unity.com/tutorial/how-to-use-the-unity-hub?courseId=6401bbfcedbc2a22aaebd59b

© 2024 Unity Technologies 63 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

Use UVCS in a Unity project
Unity will automatically set up a repository (repo) when you create a project using the Unity
Hub and check the Version Control checkbox.

Setting up Version Control in Unity Hub

This means that your project’s data and files will be stored both locally on your machine, but
also on the cloud, in order to help with collaboration and act as a safety backup. The name of
your project becomes the name of the repo, and you can choose the server that is closest to
you for high speed connections.

The Assets, Packages, and Project Settings folders are backed up onto the server on first use.
You can access these files by logging into the Unity Cloud and in the repository select File
Explorer. This shows you all the files that exist on the cloud repo.

The File Explorer on the Unity Cloud dashboard shows the structure of files and folders in the repo.

https://unity.com/releases/lts

© 2024 Unity Technologies 64 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

UVCS ignores the Library, Logs and User Settings folders, as these are auto-generated on
your computer and take up a lot of space.

Other folders that are ignored by UVCS will have a green box with a forward slash icon below
the folder or file in the Project window.

Ignored files that are not backed up on the cloud are shown with a green box containing a forward slash.

Be sure to include the Settings folder in the Pending Changes section of the Version Control
window if the project uses URP or HDRP. If the Settings folder has a forward slash in a green
box, select it and right-click. Choose Version Control> Add to source control.

The forward slash will become a plus icon in a green circle and these files will now be added
to the pending changes list, ready to be uploaded to the cloud.

Including settings files to the pending changes view

https://unity.com/releases/lts

© 2024 Unity Technologies 65 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

Inviting other team members
In the Version Control window there is a button on the right of the window that you can use to
invite team members.

The Invite Members to Organization option in the Version Control window

This will take you to the Unity Cloud login page. Use your Unity ID and password to login.

DevOps will open from the shortcuts on the left and the seats section will then also open,
allowing you to add extra seats to your current project. At the time of writing you can’t add
more than three seats in the free tier. You can upgrade to Cloud Pro to buy additional seats.
See the Unity Cloud pricing plans page for more information or, sign into the Unity Cloud
dashboard and go to the DevOps dashboard “About” page.

Add extra seats from the DevOps section on the Unity Cloud.

Assign the new members a seat in your project. They should also be invited to become
organization members. This gives them full access to all data on the dashboard for the cloud
including usage statistics.

https://unity.com/releases/lts
https://unity.com/products/compare-plans/unity-cloud
https://cloud.unity.com/home/organizations/default/devops/about

© 2024 Unity Technologies 66 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

Go to Administration>Organization members and click the invite organization members
button to add extra people to your organization.

Add extra organization members from the Administration option.

Assign each member an appropriate role. Choose from guest, user, or admin. Users and admin
members can see all projects and you can assign roles in the project members section to give
them the appropriate level of access to the project data.

This allows them to access the project and contribute to it based on their role. Users with
admin status will have full access to the options available on the cloud.

An email is sent to the other members that you invite.

The invited member should then open Unity Hub and click on the drop down next to the Add
button and choose Add UVCS repository:

Click Add UVCS repository to open a project on the Unity Cloud.

Note: It’s important that all team members are using the same version of Unity, otherwise it
can cause issues when converting the project between versions.

This will then download the project from the cloud repository onto the user’s computer.

https://unity.com/releases/lts

© 2024 Unity Technologies 67 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

Check in changes
As you make changes to your project you will see a green + icon on the files that are changed.
This shows you which files to check into the server for update.

A green circle with a plus icon indicates a file has been changed and needs to be checked in.

Update your project often to make rolling back easier. Updated files are shown in the Pending
Changes section of the Version Control window. Add a short, concise description of the
changes you have made and click the Check in Changes button.

The Pending Changes section allows you to check in changes you make to your project.

Other users who are working on the same branch will see a yellow download icon appear in
the Version Control window, under the Incoming Changes tab. This displays the changes that
are made by other users.

Other users can see your checked-in changes and can update their workspace to incorporate them.

They can click the Update workspace button to update their workspace and incorporate your
changes.

https://unity.com/releases/lts

© 2024 Unity Technologies 68 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

Or they can choose to see the differences from before and after if it’s an existing file that has
been modified by right-clicking on the changed file and selecting Diff.

Check the difference between the changed file and the original file.

In the Diff viewer they can now see the original version on the left and the incoming changes
on the right. This is useful for C# scripts. Unity’s code-aware merge tech, Semantic Merge,
tracks moved code to help you focus only on the relevant changes.

The Diff viewer displays the original on the top, in orange, and the changed file below, in blue.

All changesets can be seen in a list in the Changesets section, showing who made the
changes on what day and time. The description of the change and the files that have been
updated are included in the Changeset list.

https://unity.com/releases/lts

© 2024 Unity Technologies 69 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

A display of all the changesets made to the project; you can roll back to any changeset

The UVCS desktop client
The Version Control window in the Unity Editor gives you the standard features you’ll need to
push and pull data from the cloud. The desktop client provides additional features.

To launch the desktop client click on Branch Explorer when working in the expanded mode. If
you have not yet installed the client this will prompt you to do so.

Click the Branch Explorer button to launch the UVCS desktop app.

The version control apps, including Gluon and Unity DevOps Version Control, the latter being the UVCS desktop app

Gluon is the more beginner-friendly software while UVCS is the full-featured option. By default
clicking Branch Explorer will open UVCS software. You can switch between Gluon and UVCS
by opening them from the installed software on your computer. Unity will auto detect which
version you are using and switch to using that system.

https://unity.com/releases/lts

© 2024 Unity Technologies 70 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

Gluon is a version control app that’s artist-friendly.

UVCS is the full software.

https://unity.com/releases/lts

© 2024 Unity Technologies 71 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

Using Gluon
As explained in the section that introduces UVCS, Gluon is a slim client designed specifically
with artists in mind. It allows you to pick only the files that you’re going to work on and
check them out from the server, locking them from being modified by anyone else. Once you
complete your work, you check the files back in. The Gluon GUI removes the more complex
concepts that work better for programmers than for less technical users.

Open Gluon from the installed Unity DevOps Version Control applications.

The Gluon desktop app can be found from your installed Unity DevOps software.

It will prompt you to change from full mode to partial mode, the mode which Gluon runs in.

This warning allows you to change to a partial mode when working in Gluon by clicking Run an update.

Inside Unity, a Configure Gluon button replaces the branches icon. This will open the Gluon
app every time you click on it.

Team members using Gluon will now be able to open the Gluon app directly from the Version Control window in Unity.

You can enable the dark theme by clicking on the options button at the top right of the Gluon
app.

https://unity.com/releases/lts

© 2024 Unity Technologies 72 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

In Gluon you can use the options drop down at the top right to enable the dark theme.

Gluon uses the main branch only, providing a visual, artist-friendly workspace. You can
use Gluon to easily access the Explore workspace feature to upload and download files as
needed.

In the Explore workspace section click the Configure button to make changes to the files on
the repo.

Click the Configure button to make changes to files on the repo.

Click on the checkboxes next to files
to either download or remove from the
Explore workspace view. Files that will
download to the Unity Editor turn green
and files that you want to remove from
Unity will turn red. Click Apply when
done and then Update workspace so
the files will be available in your version
of Unity.

Even if you delete files inside of
Gluon they only relate to this current
changeset and any future changesets
you create. The files will still be on the
cloud as they will be referenced by
previous changesets.

Select the files you need to download and click Apply in Gluon.

https://unity.com/releases/lts

© 2024 Unity Technologies 73 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

You can see the visual change of a texture that has numerous revisions by right-clicking on
a revision in the options section on the right side of the Gluon app and selecting Diff with
previous revision.

See a visual change between revisions by selecting Diff with previous revision.

This will show the differences between the previous revision and the current one.You have a
few options in which to view this including swipe, which lets you drag a swipe slider along the
image to view before and after.

Swipe option in the Diff viewer

https://unity.com/releases/lts

© 2024 Unity Technologies 74 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

UVCS desktop app
The UVCS desktop app is the full, complete version control software suitable for team
members who want access to branching. You can open it from the installed Unity DevOps
Version Control applications.

If you used Gluon previously, it will prompt you to change from partial mode to full mode, the
mode which UVCS runs in.

Change from partial mode to full mode for UVCS desktop version control software.

Branches
Branches allow different team members to work on the same project independently of each
other. For example, a team member might create a new feature on a separate branch, while
other team members work on the main branch. Features can be things like creating the code
for achievements, adding the mechanics for different types of pickups, etc.

When they complete their task they can merge their branches back into the main branch.
All team members working on the project will then be able to update their workspace to
incorporate all the work that has been done.

When you select the Branch Explorer within the Version Control window in the Unity Editor, it
opens the UVCS app and takes you to the Branches section.

You can open the Branch Explorer section of the UVCS desktop app.

https://unity.com/releases/lts

© 2024 Unity Technologies 75 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

Each of the circles represents a changeset. Your current changeset has a house icon.

Right-click on a changeset and choose Create branch from this changeset.

The Create a branch from a changeset option

You will now be working on a separate branch. Any changes made by team members on
the main branch or other feature branches will not be sent to you. This reduces the risk of
someone else’s changes conflicting with your progress. You can update their changes later
after merging.

Branches can have multiple changesets marked by circles just like the main branch.

https://unity.com/releases/lts

© 2024 Unity Technologies 76 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

When you complete your work on the branch you can merge your branch back to the main one
by right-clicking and choosing Merge from this changeset to….

Merge a branch back into another branch such as Main.

It will display available branches. Select the branch you want to merge to.

Available branches to merge to

https://unity.com/releases/lts

© 2024 Unity Technologies 77 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

This opens the merge section and shows if there are any conflicts. If there are no conflicts,
click the Check in merge button.

UVCS checks all files on your branch for any conflicts with the main branch.

If someone on the main branch has made changes to the same file or files that you have, this
might cause conflicts when trying to merge.

Handling conflicts
A script or a scene file might be changed by two or more people on different branches. Trying
to merge them together will trigger a merge conflict.

Two conflicts have been identified showing the files containing the conflicts.

Right-click on the files that have conflicts to show the differences and then decide if you want
to keep or remove the changes.

Right-click menu showing the options available to handle a merge conflict

https://unity.com/releases/lts

© 2024 Unity Technologies 78 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

With a script you can choose Diff source with destination. This will open the Diff viewer so
you can see how your file is different to the one on the branch you want to merge with.

The Diff viewer shows the differences in the code between your file and the one on the branch you want to merge with.

This can help you to decide whether to overwrite the file on the other branch with your file. To
do this choose Merge keeping source changes:

Or you can discard your changes and keep the original file on the other branch. To do this
choose Merge keeping destination changes:

Finally, you can choose Merge selected files and UVCS will merge the two files together
attempting to keep both sets of changes, although you should check the script after the
merge to ensure it has done this correctly:

The Branch Explorer will now show which changesets have inherited merges from other
branches.

Branch merged back into Main

https://unity.com/releases/lts

© 2024 Unity Technologies 79 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

You can also right-click on any of the previous changesets and choose Switch workspace
to this changeset to revert back to that point. This may be necessary if you added items or
scripts that disrupted the game or caused issues.

You can switch back to any previous changeset by right-clicking on the changeset of choice.

Changesets that cause serious errors or bugs can be deleted. These should not have any
changesets leading forward from them, or labels or sub branches.

Right-click on a changeset with errors and go to Advanced options > Delete changeset.

Delete a changeset from the right-click menu.

Merge rules
A good idea is to implement merge rules to prevent merge conflicts from disrupting your
team’s workflow. This can be used in larger teams where team managers want to approve a
branch before allowing it to be merged into the main branch. This prevents introducing errors
into the main workflow.

https://unity.com/releases/lts

© 2024 Unity Technologies 80 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

Log into the Unity Cloud dashboard, go to settings, then Merge rules.

Create a new merge rule from the Unity Cloud settings.

Click the New merge rule button and select from one of the four options. Only allow merge if
reviewed will ensure that a merge can only take place after being reviewed and approved by
other team members, or team managers.

You can also apply this to all repos if you have multiple that you are working on, or specify a
specific repo from the drop down list.

The option Only allow merge if reviewed requires other team members to review your branch before merge.

Specify which branches you would like the merge rules to apply to. It needs a source branch,
which is the branch you are working on, and a destination branch, the branch you want to
merge to. Click the Save rule button and it will now be active. At any point you can disable or
delete a rule from the Unity Cloud.

https://unity.com/releases/lts

© 2024 Unity Technologies 81 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

Include which branches the merge rule will apply to.

Team members wanting to merge their branch will have to request a branch review.

Go to the Branches section and right-click on the branch you want to merge. Choose the
option New code review for this branch.

Request a code review for a branch you want to merge.

https://unity.com/releases/lts

© 2024 Unity Technologies 82 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

This will contain all the files that have been changed over the course of the entire branch.

Click on conversations to leave a message and invite other team members to review your
work. Note that each team member must review the branch before you can merge, so ensure to
include only the relevant people. They will then receive an email message to review your code.

Choose individuals or groups members to review your branch.

Go to Code Reviews to see the progress of the review. Double-click to open it to see if any
messages have been left for you.

Code reviews show the ongoing progress of requested reviews.

https://unity.com/releases/lts

© 2024 Unity Technologies 83 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

The invited team members can then mark the branch as either Rework required or Reviewed
and leave a message.

Reviewers can click the Mark Review button to mark it as rework required or reviewed.

Once the branch is reviewed it can then be merged. This adds extra security to your project.

You can also do the same procedure for code reviews on a specific changeset. This might be
useful when you want other team members to review your code for bugs or issues, or perhaps
suggest ways to improve the code.

To do this, right-click on a changeset and choose New code review for this changeset. You
can then invite team members to check your files and give recommendations.

Requesting a code review for a changeset

https://unity.com/releases/lts

© 2024 Unity Technologies 84 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

You can also add labels to a changeset. This might be useful if the changeset is an approved
version e.g., version 1.0, or if it’s a stable changeset and can be used for branching.

Right-click on the changeset and choose Label this changeset. Labels prevent the changeset
from being deleted. You can remove a label from the labels section if necessary.

Label a changeset from the right-click menu.	 Labels give other users important information 	
		 about this changeset.

Locking files
Locking a file while you are working on it can prevent major merge conflicts. This file will then
be locked on the cloud, preventing other team members from making changes to it while it’s
locked (they can still access the file in a read-only format). Once the file is checked back in,
the lock is removed and other team members can make changes to it.

Locks are not automatically applied. By default, when you save your progress in Unity, any files
you are working on will be marked with a checkout icon.

A purple checkout icon appears on the file icon in Unity and also on
everyone else’s versions, letting them know that somebody is working on
the file.

The checkout icon in a purple box is displayed on the file on every team member’s computer.

You can manually checkout a file before you begin working on it. Click the Checkout button in
the Inspector. Other team members will see that you are working on the file, however, this is
not a file lock, so other team members can still make their own changes to the same file. This
is not as effective as using file locking.

Checkout a file when you are making changes to warn other team members that you are working on it.

https://unity.com/releases/lts

© 2024 Unity Technologies 85 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

UVCS uses smart locks. This ensures that other team members who want to make changes
to this file will be forced to use the latest revision of the file. This is important, as you may be
working on a branch that is using an older version of that file. Smart locks checks all branches
including the main to find the latest revision of this file and ensures you are working from that
version and not an outdated older version.

To lock files, go into the Branch Explorer.

In the Workspace Explorer view find the file you want to lock, right-click on it and choose Lock
and checkout. This only works as long as no other team member has checked the file out.

Lock files from the UVCS desktop app in the Workspace Explorer.

https://unity.com/releases/lts

© 2024 Unity Technologies 86 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

You can define locking rules for this type of file. To just lock this specific file, choose Lock only
(The fourth option in the list below).

Define rules for locking this file or filetype.

The file will now display a purple lock icon in each team member’s version of
Unity, letting others know that you have locked the file for editing.

The purple lock icon shows other team members that this file is locked.

Team members can still view the file as read-only, but cannot make any changes until it is
checked back in by you.

After completing your changes, check in the file and it removes the lock.

https://unity.com/releases/lts

© 2024 Unity Technologies 87 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

Team members with admin status can log into the cloud and go to Repositories and then File
locks to manually remove a lock.

Removing file locks on the Cloud

Monitoring or removing a repository
You can monitor the Repository in the desktop app. Click on the Home icon at the top left and
select the top icon to view the current Repository.

From here you can download the entire repo to your computer, open it in the desktop app,
rename it, or delete it. Repos stay on the cloud for a further 10 days before being deleted, in
case you change your mind. You can retrieve a deleted repo by choosing Undelete.

Downloading, deleting, or undeleting a repo

https://unity.com/releases/lts

© 2024 Unity Technologies 88 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

You can view any repositories on the Cloud in the DevOps section. This will show you the
actual storage used, which should be much smaller than the project on your computer.

Here you can also add or remove repositories. The DevOps section will give you more
information regarding your DevOps account including usage reports and settings.

View the storage of your repositories by logging into the Unity Cloud DevOps section.

You can view your current data usage by checking the Overview section in the cloud. This will
show your monthly GB hours. See the Unity Cloud pricing plans page for more information or
sign into the Unity Cloud dashboard and go to the DevOps dashboard “About” page.

The Overview section on the Cloud shows your monthly storage.

https://unity.com/releases/lts
https://unity.com/products/compare-plans/unity-cloud
https://cloud.unity.com/home/organizations/default/devops/about

© 2024 Unity Technologies 89 of 95 | unity.com

| Best practices for version control | Get started with UVCS in Unity 6 | Build the foundation for your live game |

Unity support

In the DevOps section of the Unity Cloud dashboard, click on Help and support.

From the cloud dashboard, click on the Help and support button to view FAQs, forums and
blog posts, or generate a support ticket for help with issues that you might encounter.

You will also find sample repo projects in the DevOps category, under Explore repositories.
You can download these public repos to your computer as template projects to work on.

Some of the public sample repositories you can download

https://unity.com/releases/lts

© 2024 Unity Technologies 90 of 95 | unity.com

Build the foundation
for your live game

Outside of devops Unity also provides a complete ecosystem for managing live games with
Unity Gaming Services (UGS) that can help you acquire and connect your players at scale
across multiple platforms, and manage your back end infrastructure. Here is a brief overview
of some of the services.

Unity Gaming Services

Multiplayer

Unity offers two networking stacks: Netcode for GameObjects and Netcode for Entities, plus
multiplayer tools from Unity Gaming Services like Game Server Hosting and Vivox Voice Chat.
You can build within Unity’s ecosystem, or mix and match your preferred tools and services
depending on your needs.

Learn more about Unity Multiplayer

https://unity.com/releases/lts
https://unity.com/solutions/gaming-services
https://unity.com/solutions/multiplayer

© 2024 Unity Technologies 91 of 95 | unity.com

| Get started with UVCS in Unity 6 | Build the foundation for your live game | Conclusion |

Community

Access a suite of community gaming services for games of all sizes, from a two-person
project to millions of simultaneous users, with engine-agnostic voice and text chat. Add social
elements like friends and leaderboards to your game to increase player engagement and
retention.

Learn more about Unity game Community solutions

Accounts

Unity Authentication and Unity Player Accounts offer you the flexibility to handle your players’
identities by providing mix-and-match features suited to your game and target platforms.

Learn more about Unity Authentication and Player Accounts.

Content management

Cloud Save makes it efficient to create a better player experience where players can store
game data to the cloud. With Cloud Content Delivery, you can build and release game updates
with powerful asset management and content delivery via the cloud and the first 50 GB of
bandwidth are free every month.

The Remote Config service makes it efficient to run A/B experiments that target specific player
segments by using Game Overrides. You can change your game’s difficulty, ad frequency, or
general attributes for all players or a subset of players before making any code changes or app
updates.

Learn more about Unity Content Management

https://unity.com/releases/lts
https://unity.com/solutions/community
https://unity.com/solutions/accounts
https://unity.com/solutions/content-management

© 2024 Unity Technologies 92 of 95 | unity.com

| Get started with UVCS in Unity 6 | Build the foundation for your live game | Conclusion |

Crash reporting

The Cloud Diagnostics service can help improve stability and reduce churn. It provides real-
time crash data so your team can fix bugs faster and help prevent player churn. Unity offers
crash and error reporting solutions that are free to start using and can be scaled up as your
project grows.

Learn more about Unity Cloud Diagnostics

Game economy

Game Economy services provide you with features to build a customized in-game economy
and offer your players seamless purchases, currency conversion, inventory management, and
more. Once you have integrated a fully-featured economy into your game you can manage it
efficiently through a streamlined dashboard.

Learn more about Unity’s Economy service

Engagement and analytics

Understand your game and engage your players. These services can help you efficiently refine
your game experience, retain players, and grow your game.

Learn more about Unity Analytics

https://unity.com/releases/lts
https://unity.com/solutions/crash-reporting
https://unity.com/products/economy
https://unity.com/solutions/engage-players

© 2024 Unity Technologies 93 of 95 | unity.com

| Get started with UVCS in Unity 6 | Build the foundation for your live game | Conclusion |

Unity Grow

User acquisition

Unity’s suite of user acquisition services can help your game acquire the right mobile users.
Tap into the extensive global supply of Unity Ads to optimize your campaign goals for return
on ad spend (ROAS), retention, or scale.

Learn about Unity user acquisition

Monetization

Reach your app’s full revenue potential with the most advanced technology and robust toolset
in the market for monetizing your game effectively.

Learn about Unity monetization

https://unity.com/releases/lts
https://unity.com/solutions/user-acquisition
https://unity.com/solutions/app-monetization

© 2024 Unity Technologies 94 of 95 | unity.com

Conclusion

Hopefully this guide will help you to feel more comfortable working with version control as part
of a team in Unity. Even if you’re working on a solo project, the principles of organizing your
project and using version control can be really useful.

The biggest takeaway is the importance of clear team communication and agreement on tools,
processes, structure and code style. As a team, you need to agree on your guidelines: how
you should structure your project, which version control system to use, and how your workflow
in that system looks. Then, when you start integrating other tools such as JIRA, GitLab,
build tools, or automated testing, the work you’ve already done structuring your project and
workflow will really come into its own.

Finally, check out the following resources to find a wealth of information on the various version
control systems discussed in the book, plus more tips on setting up your Unity project for
success.

https://unity.com/releases/lts

© 2024 Unity Technologies 95 of 95 | unity.com

Additional resources

	— Eight factors to consider when choosing a version control system

	— Introduction to version control, Unite Now 2020

	— Git Apprentice, by Chris Belanger and Bhagat Singh

	— Version Control for Games with Unity’s Plastic SCM

	— Plastic SCM product documentation

	— Mergebot in Plastic SCM

	— Unity open project with version control

	— How KO_OP uses Plastic SCM to accelerate production

	— The hidden productivity costs disrupting your release timelines

Perforce setup

	— How to Configure Helix Core and Game Engine

	— Helix Core documentation

https://unity.com/releases/lts
https://blog.unity.com/technology/eight-factors-to-consider-when-choosing-a-version-control-system?utm_source=demand-gen&utm_medium=PDF&utm_campaign=asset-links-gmg-achieve-quality&utm_content=version-control-and-project-organization-ebook
https://youtu.be/ISW2nS_v3Ic
https://www.raywenderlich.com/books/git-apprentice/v2.0/
https://youtu.be/PjPK6hxGUFU
https://docs.plasticscm.com/book/
https://www.youtube.com/watch?v=WJTKSUgj8pY
https://github.com/UnityTechnologies/open-project-1
https://create.unity.com/ko-op-plastic-scm-case-study
https://create.unity.com/hidden-productivity-costs-e-book
https://www.perforce.com/products/helix-core/configure-helix-core-game-engine
https://www.perforce.com/products/helix-core/learning-resources

unity.com

https://unity.com/

	Introduction
	Source control vs version control
	Foundational concepts
	How version control works
	Why use version control?
	Centralized vs distributed version control

	Centralized
	Distributed
	Centralized
	Distributed

	Key terms

	Best practices for organizing a Unity project
	Project organization
	Folder structure
	Empty folders
	The .meta file
	Naming standards
	Workflow optimization
	Split up your assets
	Presets

	Code standards
	UI Toolkit formatting conventions
	Services for project organization

	Asset Manager
	Build Automation

	Version control systems
	Git
	Perforce (Helix Core)
	Apache Subversion
	Unity Version Control
	VCS comparison
	Setting up Unity to work with version control

	Editor project settings
	Perforce Helix Core
	UVCS
	Git and other solutions

	What to ignore
	Working with large files

	Best practices for version control
	Commit little, commit often
	Keep commit messages clean
	Avoid indiscriminate commits
	Get the latest
	Know your toolset
	Feature branches and Git Flow
	Pull requests

	Get started with UVCS in Unity 6
	Use UVCS in a Unity project
	Inviting other team members
	Check in Changes
	The UVCS desktop client
	Using Gluon
	UVCS desktop app
	Branches
	Handling conflicts
	Merge rules
	Locking files
	Monitoring or removing a repository
	Unity support

	Build the foundation for your live game
	Unity Gaming Services
	Multiplayer
	Community
	Accounts
	Content management
	Crash reporting
	Game economy
	Engagement and analytics
	Unity Grow

	User acquisition
	Monetization

	Conclusion
	Additional resources

	Botón 3:
	Página 5:
	Página 6:
	Página 7:
	Página 13:
	Página 36:
	Página 53:
	Página 62:
	Página 90:
	Página 94:
	Página 95:

