
U N I T Y 6 P R E V I E W E D I T I O N ⟶ E - B O O K

Level up your code
with design patterns
and SOLID

Contents

Introducing design patterns. . 6

Using this guide . . 8

The sample project. . 8

The SceneBootstrapper. . 10

The SOLID principles. . 12

Single-responsibility principle. . 13

Example: Sample project. . 17

Open-closed principle . . 17

Example: Sample project. . 22

Liskov substitution principle . . 23

Example: Sample project. . 30

Interface segregation principle. . 31

Example: Sample project. . 33

Serializing interfaces . . 34

Dependency inversion principle 36

Example: Sample project. . 41

Interfaces versus abstract classes. 43

Abstract classes. . 43

Interfaces. . 45

A SOLID understanding . . 47

Design patterns for game development 48

The Gang of Four . . 48

Learning design patterns. . 49

 Further reading . . 50

Patterns within Unity . . 50

Factory pattern . . 51

Example: A simple factory. . 52

Pros and cons. . 55

Improvements. . 56

Object pool. . 57

Example: Simple pool system . . 58

UnityEngine.Pool. . 62

Pros and cons. . 64

Improvements. . 65

Singleton pattern. . 66

Example: Simple singleton. . 67

Persistence and lazy instantiation. 68

Using generics. 70

Pros and cons. . 72

Command pattern. . 73

The command object and command invoker. 74

Example: Undoable movement . . 75

Pros and cons. . 78

Improvements. . 78

State pattern . . 80

States and state machines. . 80

Example: Simple state pattern. . 82

Pros and cons. . 87

Improvements. . 87

Example: Game states . . 89

Explore the QuizU Project . . 92

Observer pattern. . 93

Events . . 94

Example: Simple subject and observer. 95

Naming conventions. . 97

UnityEvents and UnityActions. . 99

Pros and cons. . 100

Improvements. . 100

Model View Presenter (MVP). . 102

Model View Controller (MVC) design pattern. 102

Model View Presenter (MVP) and Unity. 103

Example: Health interface . . 104

MVP in Unity UI. . 108

Pros and cons. . 109

Model-View-ViewModel. . 110

MVVM in Unity 6. . 111

 Data binding. . 111

Example: Updated sample project. 112

Data binding: UI Builder. . 113

Data binding: Scripting . . 117

Pros and cons. . 120

Strategy pattern. . 121

Example: An ability system . . 122

Before refactoring . . 122

Implementing the strategy pattern. 124

Example: Sample project. . 126

Pros and cons. . 127

More examples. . 127

Flyweight pattern. .128

Unrefactored example. . 129

Implementing the flyweight pattern 131

Example: Sample project. . 132

 Prefabs versus flyweights. . 135

Pros and cons. . 136

More examples. . 136

Dirty flag. . 137

Example: Sample project. . 138

Pros and cons. . 143

 Dirty flags versus dirty bits and caching. 143

More examples. . 143

Conclusion. . 145

 Other design patterns. . 146

A series of advanced resources
for Unity programmers. . 147

© 2024 Unity Technologies 6 of 147 | unity.com

When working in Unity, you don’t have to reinvent the wheel. It’s likely someone has already
invented one for you.

For every software design issue you encounter, a thousand developers have been there
before. Though you can’t always ask them directly for advice, you can learn from their
decisions through design patterns.

Design patterns are general solutions to common problems found in software engineering.
These aren’t finished solutions that you can copy and paste into your code, but you can think
of design patterns as extra tools in your toolbox. Some are more obvious than others.

This guide assembles well-known design patterns in Unity development. The examples in
this guide have been simplified and technical jargon reduced, to make them more accessible,
though you should have a working knowledge of C# basics before starting with them.

Important note: This second edition includes some of the new patterns that were requested
by members of the Unity community. Additionally, the code examples and project that
accompany this guide have been upgraded to work with Unity 6. Unity 6 will be available later
this year. If you want to follow along with the examples in this guide, and the accompanying
demo project, make sure to download Unity 6 Preview.

If you’re still new to design patterns or need a quick refresher, the guide also provides
common scenarios where you can apply them in game development. For those switching from
another object-oriented language (Java, C++, etc.) to C#, these samples will show you how to
adapt patterns specifically to Unity.

Introducing design
patterns

https://unity.com/releases/lts
https://unity.com/releases/unity-6

© 2024 Unity Technologies 7 of 147 | unity.com

| Introducing design patterns | Using this guide | The SOLID principles |

At the core of it, design patterns are just ideas. They won’t apply in all situations. But they can
help you build larger applications that scale when used correctly. Integrate them into your
project to improve code readability and make your codebase cleaner. As you gain experience
with patterns, you’ll recognize when they can speed up your development process.

Then you can stop reinventing the wheel and, well, start working on something new.

Contributors

This guide was written by Wilmer Lin, a 3D and visual effects artist with over 15 years of
industry experience in film and television, who now works as an independent game developer
and educator. Significant contributions were also made by senior technical content marketing
manager Thomas Krogh-Jacobsen and senior Unity engineers Peter Andreasen and Scott Bilas.

https://unity.com/releases/lts

© 2024 Unity Technologies 8 of 147 | unity.com

Using this guide

This guide aims to present you with new ways of thinking about and organizing your code. It
adapts various software design patterns specifically for Unity development.

The sample project
This e-book is accompanied by a sample project that shows some of the code in context.
Download the project from the Asset Store and use it to follow along in the corresponding
scenes to explore these design patterns and their underpinning principles.

 Navigate the menus to the SOLID and design pattern samples.

https://unity.com/releases/lts
https://assetstore.unity.com/packages/slug/289616

© 2024 Unity Technologies 9 of 147 | unity.com

| Introducing design patterns | Using this guide | The SOLID principles |

Start the project with the Boot scene. This is a bootstrap scene that configures the demo and
gives access to the main menu (see factbox below). Then, you can navigate the menus to the
appropriate sample. Each scene demonstrates a different SOLID concept or design pattern.

 Explore the sample project.

Please note that there may be minor differences between the sample project and the code
examples in this guide. To enhance clarity and readability, some examples feature simplified
code, (e.g., public fields).

Your team might prefer a coding style different from the conventions used in this guide or the
sample project. We recommend creating a C# style guide specific to your specific needs and
then following it consistently across the team.

For further guidance, refer to our e-book, Create a C# style guide: Write cleaner code that
scales, which offers some tips on how to adapt, create, and implement code style guidelines.

https://unity.com/releases/lts
https://unity.com/resources/create-code-c-sharp-style-guide-e-book?ungated=true
https://unity.com/resources/create-code-c-sharp-style-guide-e-book?ungated=true

© 2024 Unity Technologies 10 of 147 | unity.com

| Introducing design patterns | Using this guide | The SOLID principles |

 The SceneBootstrapper
The project features a SceneBootstrapper class designed to streamline the
development process when dividing your project into multiple Unity scenes.

The bootstrap logic automatically loads a designated Boot scene whenever you enter
Play mode as the first thing. For that reason the Boot scene should be listed first in the
File> Build Settings.

This approach ensures a consistent starting point for the game. Even if you don’t have the
Boot scene currently opened, entering Play mode will force the project to load from there.

The SceneBootstrapper also tracks the last scene active in the Editor before Play mode is
initiated, storing this information in EditorPrefs. After exiting Play mode, it reverts to the
last active scene, making it easier to pick up where you left off.

 Toggle the SceneBootstrapper using the menus.

If you want to explore the scenes individually without the need to go through the Boot
scene every time, simply disable the bootstrapper from the Design Patterns menu
(Design Patterns > Don’t Load Bootstrap on Play). Re-enable the bootstrapper through
the same menu.

For the application to function correctly, all scenes must be listed in the Build
Settings, with the bootstrapper scene positioned at index 0. Otherwise, the
IsSceneInBuildSettings method in the example implementation will log an error.

For a more in-depth understanding of how the Bootstrapper works, you can refer to the
appendix section. You can also explore the similar bootstrapper from the QuizU project in
this related article.

https://unity.com/releases/lts
https://discussions.unity.com/t/welcome-to-the-new-ui-toolkit-sample-project-quizu/308607
https://discussions.unity.com/t/welcome-to-the-new-ui-toolkit-sample-project-quizu/308607#bootloadscreen-20

© 2024 Unity Technologies 11 of 147 | unity.com

| Introducing design patterns | Using this guide | The SOLID principles |

The KISS principle

When reviewing these examples, remember there isn’t a blanket “right way” to approach a
problem. The sample code is one solution among many.

When in doubt, filter everything in this guide through the KISS principle: “Keep it simple,
stupid.” Only add complexity if necessary.

Every design pattern comes with tradeoffs, whether that means additional structures to
maintain or more setup at the beginning. Decide if the benefit justifies extra work before
implementing it.

If you’re unsure if a pattern applies to your specific problem, you might be better off waiting
for a situation where it feels like a more natural fit. Don’t use a pattern because it’s new or
novel to you; use it when you need it.

Then, the design pattern will serve its intended purpose: to help you develop better software.

Let’s get started.

The Bootstrapper loads the Boot scene.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/KISS_principle

© 2024 Unity Technologies 12 of 147 | unity.com

The SOLID principles

SOLID is a mnemonic acronym for five core fundamentals of software design. You can think
of them as five basic rules to keep in mind while coding to keep object-oriented designs
understandable, flexible, and maintainable.

Before charging into the patterns themselves, let’s look at some design principles that
influence how they work.

The five core principles are:

	— Single responsibility

	— Open-closed

	— Liskov substitution

	— Interface segregation

	— Dependency inversion

Let’s examine each concept and see how they help you make your code more understandable,
flexible, and maintainable.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Mnemonic
https://en.wikipedia.org/wiki/Object-oriented
https://en.wikipedia.org/wiki/Software_maintenance
https://en.wikipedia.org/wiki/Single-responsibility_principle
https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle

© 2024 Unity Technologies 13 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

Single-responsibility principle
A class should have one reason to change, just its single responsibility.

The first and most important SOLID principle is the single-responsibility principle (SRP), which
states that each module, class, or function is responsible for one thing and encapsulates only
that part of the logic.

In other words, it states that you should create many smaller classes rather than one monolithic
class. Shorter classes and methods are easier to explain, understand, and implement.

If you’ve worked in Unity for a while, you’re likely already familiar with this concept. When you
create a GameObject, it holds a variety of smaller components. For example, it might come with:

A MeshFilter that stores a reference to the 3D model

	— A Renderer that controls how the model surface appears onscreen

	— A Transform component that stores scale, rotation, and position

	— A Rigidbody if it needs to interact with the physics simulation

Each component does one thing and does it well. You build an entire scene from
GameObjects. The interaction between their components is what makes a game possible.

You’ll construct your scripted components in the same way. Design them so each one can be
clearly understood. Then have them work in concert to make complex behavior.

If you ignore single responsibility, you might create a custom component that does this:

 A Player script with multiple responsibilities

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Single-responsibility_principle

© 2024 Unity Technologies 14 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

public class UnrefactoredPlayer : MonoBehaviour
{
 [SerializeField] private string inputAxisName;
 [SerializeField] private float positionMultiplier;
 private float yPosition;
 private AudioSource bounceSfx;

 private void Start()
 {
 bounceSfx = GetComponent<AudioSource>();
 }

 private void Update()
 {
 float delta = Input.GetAxis(inputAxisName) * Time.deltaTime;

 yPosition = Mathf.Clamp(yPosition + delta, -1, 1);
 transform.position = new Vector3(transform.position.x, yPosition *
 positionMultiplier, transform.position.z);
 }

 private void OnTriggerEnter(Collider other)
 {
 bounceSfx.Play();
 }
}

This UnrefactoredPlayer class has a mishmash of responsibilities. It plays a sound when a
player collides with something, manages input, and handles movement. Even if the class
is relatively short at the moment, it will become tricky to maintain as your project evolves.
Consider breaking the Player class into smaller classes.

 The Player, refactored into classes with single responsibilities

https://unity.com/releases/lts

© 2024 Unity Technologies 15 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

[RequireComponent(typeof(PlayerAudio), typeof(PlayerInput),
typeof(PlayerMovement))]
public class Player : MonoBehaviour
{
 [SerializeField] private PlayerAudio playerAudio;
 [SerializeField] private PlayerInput playerInput;
 [SerializeField] private PlayerMovement playerMovement;

 private void Start()
 {
 playerAudio = GetComponent<PlayerAudio>();
 playerInput = GetComponent<PlayerInput>();
 playerMovement = GetComponent<PlayerMovement>();
 }
}

public class PlayerAudio : MonoBehaviour
{
 …
}

public class PlayerInput : MonoBehaviour
{
 …
}

public class PlayerMovement : MonoBehaviour
{
 …

}

A Player script can still manage the other scripted components but each class does only
one thing. This design makes it more approachable to revise the code, especially as the
requirements for your project change over time.

On the other hand, however, you need to balance the single-responsibility principle with a
good dose of common sense. Don’t oversimplify to the extreme by creating classes with just
one method.

https://unity.com/releases/lts

© 2024 Unity Technologies 16 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

Keep these objectives in mind when working with the single-responsibility principle:

	— Readability: Short classes are easier to read. There is no hard and fast rule but many
developers set a limit of 200-300 lines. Determine for yourself or as a team what
constitutes “short.” When you exceed this threshold, decide if you can refactor it into
smaller parts.

	— Extensibility: You can inherit from small classes more easily. Modify or replace them
without fear of breaking unintended features.

	— Reusability: Design your classes to be small and modular so that you can reuse them for
other parts of your game.

When refactoring, consider how rearranging code will improve the quality of life for yourself or
other team members. Some extra effort at the beginning can save you a lot of trouble later.

 Simple is not easy
Simplicity is often talked about in software design and is a prerequisite for reliability. Can
your software design handle changes in production? Can you extend and maintain your
application over time?

Many of the design patterns and principles presented in this guide help you enforce
simplicity. In doing so, they make your code more scalable, flexible, and readable.
However, they require some extra work and planning. “Simple” does not equate to “easy.”

Though you can create the same functionality without the patterns (and often more
quickly), something fast and easy doesn’t necessarily result in something simple.
Making something simple means making it focused. Design it to do one thing, and don’t
overcomplicate it with other tasks.

Check out Rich Hickey’s lecture, Simple Made Easy, to understand how simplicity can
help you build better software.

https://unity.com/releases/lts
https://www.infoq.com/presentations/Simple-Made-Easy/

© 2024 Unity Technologies 17 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

Example: Sample project

The sample project includes a simple demo of applying single responsibility principle to a
player character. The Player class references other scripts that each handle a specific
aspect of player behavior:

	— PlayerInput captures and processes player inputs from the keyboard, translating them
into a directional vector.

	— PlayerMovement controls the player’s movement based on the input vector from the
PlayerInput class.

	— PlayerAudio plays back sound effects when the player collides with obstacles.

	— PlayerFX handles particle systems for the player.

Single responsibility makes the codebase more modular and easier to read. It also simplifies
the process of updating or extending each component without affecting the others.

 The single responsibility demo separates the Player into smaller components.

Open-closed principle
The open-closed principle (OCP) in SOLID design says that classes must be open for
extension but closed for modification. A classic example of this is calculating the area of a
shape. Structure your classes so that you can create new behavior without modifying the
original code.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Open%E2%80%93closed_principle

© 2024 Unity Technologies 18 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

In this example, an AreaCalculator class has methods to return the area of a rectangle and
circle. For the sake of calculating area, a Rectangle class has a Width and Height. A Circle
only needs a Radius and the value of pi.

public class AreaCalculator
{
 public float GetRectangleArea(Rectangle rectangle)
 {
 return rectangle.width * rectangle.height;
 }
 public float GetCircleArea(Circle circle)
 {
 return circle.radius * circle.radius * Mathf.PI;
 }
}

public class Rectangle
{
 public float width;
 public float height;
}

public class Circle
{
 public float radius;
}

This works well enough, but if you want to add more shapes to your AreaCalculator, you’ll
need to create a new method for each new shape. Suppose you want to pass it a pentagon
or an octagon later? What if you need 20 more shapes? The AreaCalculator class would
quickly balloon out of control.

You could make a base class called Shape and create one method to process the shapes.
However, doing so would require multiple if statements inside the logic to handle each type
of shape. That won’t scale well.

You want to open the program for extension (the ability to use new shapes) without modifying
the original code (the internals of the AreaCalculator). Though it’s functional, the current
AreaCalculator violates the open-closed principle.

https://unity.com/releases/lts

© 2024 Unity Technologies 19 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

 How do we design the AreaCalculator to take new shapes?

Instead, consider defining an abstract Shape class:

public abstract class Shape
{
 public abstract float CalculateArea();
}

https://unity.com/releases/lts

© 2024 Unity Technologies 20 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

This includes an abstract method called CalculateArea. If you then make Rectangle and
Circle inherit from Shape, each shape can calculate its own area and return the following
result:

public class Rectangle : Shape
{
 public float width;
 public float height;
 public override float CalculateArea()
 {
 return width * height;
 }
}

public class Circle : Shape
{
 public float radius;
 public override float CalculateArea()
 {
 return radius * radius * Mathf.PI;
 }
}

The AreaCalculator can simplify into this:

public class AreaCalculator
{
 public float GetArea(Shape shape)
 {
 return shape.CalculateArea();
 }
}
public class AreaCalculator : MonoBehaviour

https://unity.com/releases/lts

© 2024 Unity Technologies 21 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

{
 private void Start()
 {
 Debug.Log(GetArea(new RectAngle { width = 2, height = 3 }));
 Debug.Log(GetArea(new Circle { radius = 3 }));
 }
 public float GetArea(Shape shape)
 {
 return shape.CalculateArea();
 }
}

The revised AreaCalculator class can now get the area of any shape that properly
implements the abstract Shape class. You can then extend the AreaCalculator functionality
without changing any of its original source.

 Revising the classes for the open-closed principle

https://unity.com/releases/lts

© 2024 Unity Technologies 22 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

Every time you need a new polygon, simply define a new class that inherits from Shape. Each
subclassed shape then overrides the CalculateArea method to return the correct area.

This new design makes debugging easier. If a new shape introduces an error, you don’t
have to revisit the AreaCalculator. The old code remains unchanged, so you only need to
examine new code for any faulty logic.

Take advantage of interfaces and abstraction when creating new classes in Unity. This helps
to avoid unwieldy switch or if statements in your logic that will be difficult to extend later.
Once you get accustomed to setting up your classes to respect OCP, adding new code in the
long term becomes simpler.

Example: Sample project

The sample project shows a similar example of applying the open-closed principle in a simple
demo. Here, the abstract base class, AreaOfEffect, introduces an abstract method called
CalculateArea.

Derived classes (CircleEffect, HexagonalEffect, RectangleEffect, and
TriangularEffect) can implement their unique formulas for calculating the area of effect or
playing back a visual effect. Each simply defines its own logic within CalculateArea. Adding
new area effect types doesn’t alter existing code.

When the player collides with an EffectTrigger component, it interacts with the
AreaOfEffect without knowledge of each effect’s specific details. Adding new effects thus
become more flexible and extensible.

 The open-closed principle makes your code more extensible.

https://unity.com/releases/lts

© 2024 Unity Technologies 23 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

Liskov substitution principle
The Liskov substitution principle (LSP) states that derived classes must be substitutable for
their base class. Inheritance in object-oriented programming allows you to add functionality
through subclasses. However, this can lead to unnecessary complexity if you’re not careful.

The Liskov substitution principle, the third pillar of SOLID, tells you how to apply inheritance to
make your subclasses more robust and flexible.

Imagine your game requires a class called Vehicle. This will be the base class of a vehicle
subclass that you will create for your application. For example, you might need a car or truck.

 Everything inherits from Vehicle.

Everywhere you can use the base class (Vehicle), you should be able to use a subclass like
Car or Truck without breaking the application.

https://unity.com/releases/lts

© 2024 Unity Technologies 24 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

Your Vehicle class might look like this:

public class Vehicle
{
 public float speed = 100;
 public Vector3 direction;

 public void GoForward()
 {
 ...
 }

 public void Reverse()
 {
 ...
 }

 public void TurnRight()
 {
 ...
 }

 public void TurnLeft()
 {
 ...
 }
}

https://unity.com/releases/lts

© 2024 Unity Technologies 25 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

Suppose you are building a turn-based game where you move the vehicles around a board.

 An example game of cars versus trains

You could have another class called Navigator to steer a vehicle along a prescribed path:

public class Navigator
{
 public void Move(Vehicle vehicle)
 {
 vehicle.GoForward();
 vehicle.TurnLeft();
 vehicle.GoForward();
 vehicle.TurnRight();
 vehicle.GoForward();
 }
}

https://unity.com/releases/lts

© 2024 Unity Technologies 26 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

With this class, you expect to be able to pass any vehicle into the Navigator’s Move method,
and this will work fine with cars and trucks. What happens, though, when you want to
implement a class called Train?

 A Train would violate your base class.

The TurnLeft and TurnRight methods would not work in a Train class since a train can’t
leave its tracks. If you do pass a train into the Navigator’s Move method, that would throw an
unimplemented Exception (or do nothing) when you get to those lines. You violate the Liskov
substitution principle if you cannot substitute a type for its subtype.

Since a Train is a subtype of Vehicle, you would expect to use it any place that accepts the
Vehicle class. Doing otherwise might make your code behave unpredictably.

Consider some tips to adhere more closely to Liskov substitution principle:

	— If you are removing features when subclassing, you are likely breaking Liskov
substitution: A NotImplementedException is a dead giveaway that you’ve violated this
principle. Leaving a method blank does so as well. If the subclass does not behave like
the base class, you’re not following LSP – even if there’s no explicit error or exception.

	— Keep abstractions simple: The more logic you put into the base class the more likely
you will break LSP. The base class should only express the common functionality of the
derived subclasses.

https://unity.com/releases/lts

© 2024 Unity Technologies 27 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

	— A subclass needs to have the same public members as the base class: Those
members also need to have the same signatures and behavior when calling them.

	— Consider the class API before establishing class hierarchies: Even though you think
of them all as vehicles, it might make more sense for a Car and Train to inherit from
separate parent classes. Classifications in reality don’t always translate into class
hierarchy.

	— Favor composition over inheritance: Instead of trying to pass functionality through
inheritance, create an interface or separate class to encapsulate a specific behavior.
Then build up a “composition” of different functionality by mixing and matching.

 Composition over inheritance

To fix this design, scrap the original Vehicle type, then move much of the functionality into
interfaces:

public interface ITurnable
{
 public void TurnRight();
 public void TurnLeft();
}

public interface IMovable
{
 public void GoForward();
 public void Reverse();
}

https://unity.com/releases/lts

© 2024 Unity Technologies 28 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

Follow the LSP principle more closely by creating a RoadVehicle type and RailVehicle
type. The Car and Train would then inherit from their respective base classes.

 Refactoring to take Liskov substitution into consideration

https://unity.com/releases/lts

© 2024 Unity Technologies 29 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

public class RoadVehicle : IMovable, ITurnable
{
 public float speed = 100f;
 public float turnSpeed = 5f;
 public virtual void GoForward()
 {
 ...
 }

 public virtual void Reverse()
 {
 ...
 }

 public virtual void TurnLeft()
 {
 ...
 }

 public virtual void TurnRight()
 {
 ...
 }
}

public class RailVehicle : IMovable
{
 public float speed = 100;
 public virtual void GoForward()
 {
 ...
 }

 public virtual void Reverse()
 {
 ...
 }
}

public class Car : RoadVehicle
{
 ...
}
public class Train : RailVehicle
{
 ...
}

https://unity.com/releases/lts

© 2024 Unity Technologies 30 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

In this way the functionality comes through interfaces rather than inheritance. Car and Train
no longer share the same base class, which now satisfies LSP. Though you could derive
RoadVehicle and RailVehicle from the same base class, there is not much need to in this
case.

This way of thinking can be counterintuitive because you have certain assumptions about the
real world. In software development, this is called the circle–ellipse problem. Not every actual
“is a” relationship translates into inheritance. Remember, you want your software design to
drive your class hierarchy, not your prior knowledge of reality.

Follow the Liskov substitution principle to limit how you use inheritance to keep your
codebase extendable and flexible.

Example: Sample project

The sample project demonstrates the Liskov substitution principle through a set of power ups.
The PowerUp abstract class serves as the base class for example player buffs (including an
InvulnerabilityPowerUp, HealthBoost, and SpeedBoost). Each subclass overrides the
ApplyEffect method to implement specific logic.

Liskov substitution allows any instance of PowerUp to be replaced with instances of its
subclasses. This ensures that the game works correctly regardless of the specific type of
power-up encountered.

The result is code reusability and maintainability. Reinforcing the open-closed principle,
adding new types of power-ups in the future won’t necessitate modifying existing code.

In Liskov substitution, objects of a subclass can always replace objects of a base class.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Circle%E2%80%93ellipse_problem

© 2024 Unity Technologies 31 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

Interface segregation principle
The interface-segregation principle (ISP) states that no client should be forced to depend on
methods it does not use.

In other words, avoid large interfaces. Follow the same idea as the single-responsibility
principle, which tells you to keep classes and methods short. This gives you maximum
flexibility, keeping interfaces compact and focused.

Imagine you’re making a strategy game with different player units. Each unit has different
stats like health and speed. You might want to make an interface to guarantee that all of the
units implement similar features:

public interface IUnitStats
{
 public float Health { get; set; }
 public int Defense { get; set; }

 public void Die();
 public void TakeDamage();
 public void RestoreHealth();

 public float MoveSpeed { get; set; }
 public float Acceleration { get; set; }

 public void GoForward();
 public void Reverse();
 public void TurnLeft();
 public void TurnRight();

 public int Strength { get; set; }
 public int Dexterity { get; set; }
 public int Endurance { get; set; }
}

Let’s say you want to make a destructible prop like a breakable barrel or crate. This prop will
also need the concept of health despite not moving. A crate or barrel also won’t have many of
the abilities associated with other units in the game.

Split it into several smaller interfaces rather than make one interface that gives the breakable
prop too many methods. A class implementing them will then only mix and match what it needs.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/Interface_segregation_principle

© 2024 Unity Technologies 32 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

Split the interface into smaller ones.

public interface IMovable
{
 public float MoveSpeed { get; set; }
 public float Acceleration { get; set; }
 public void GoForward();
 public void Reverse();
 public void TurnLeft();
 public void TurnRight();
}

public interface IDamageable
{
 public float Health { get; set; }
 public int Defense { get; set; }
 public void Die();
 public void TakeDamage();
 public void RestoreHealth();
}

public interface IUnitStats
{
 public int Strength { get; set; }
 public int Dexterity { get; set; }
 public int Endurance { get; set; }

}

https://unity.com/releases/lts

© 2024 Unity Technologies 33 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

You can also add an IExplodable interface for the exploding barrel:

public interface IExplodable
{
 public float Mass { get; set; }
 public float ExplosiveForce { get; set; }
 public float FuseDelay { get; set; }

 public void Explode();

}

Because a class can implement more than one interface, you can compose an enemy unit from
IDamageable, IMoveable, and IUnitStats.

An exploding barrel could use IDamageable and IExplodable without needing the
unnecessary overhead of the other interfaces.

public class ExplodingBarrel : MonoBehaviour, IDamageable, IExplodable
{
 ...
}

public class EnemyUnit : MonoBehaviour, IDamageable, IMovable, IUnitStats
{
 ...
}

Example: Sample project

The sample project demonstrates the interface segregation through a set of target objects.
Aim the gun with the mouse and shoot with the left mouse button.

Each target only implements the methods that it needs. By defining smaller, more focused
interfaces (such as IEffectTrigger, IExplodable, and IDamageable), each class only
implements the functionalities that are relevant. This reduces unnecessary dependencies
between classes and interfaces.

	— IEffectTrigger allows objects to trigger visual or audio effects at a specific location.
In this case, the projectile shows a small hit effect on collision.

	— IDamageable allows an object to take damage. A target with a HealthBar attached
disappears when its health runs out.

	— IExplodable instantiates an explosion prefab when the target dies.

https://unity.com/releases/lts

© 2024 Unity Technologies 34 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

This segregation of interfaces allows for greater flexibility in how objects interact within the
game environment. For example, in this way, the Projectile class can then affect other
objects without direct knowledge of each target’s specific implementation.

Interface segregation says that no client should depend on methods it doesn’t use.

 Serializing interfaces
Even if you apply the SerializeField attribute to an interface-type field, or make it
public, the field won’t display in the Inspector. Unity’s serialization system is designed
to work with concrete classes, especially those inheriting from MonoBehaviour or
ScriptableObject.

Interfaces, which are abstract by nature, do not hold concrete data themselves and
hence fall outside the direct scope of the serialization mechanism. To work around this
limitation:

	— Instead of trying to serialize the interface, serialize a reference to a concrete object
(e.g. MonoBehaviour or ScriptableObject) that implements the interface.

	— At runtime, use the is keyword to check and cast the serialized object. Then, you
can verify if it implements the required interface.

https://unity.com/releases/lts

© 2024 Unity Technologies 35 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

Here’s an example:

 // Define an interface

public interface IInteractable

{

 void Interact();

}
// Concrete class implementing the interface

public class DoorController : MonoBehaviour, IInteractable

{

 public void Interact()

 {
 // Door logic here

 Debug.Log(“Door opened”);

 }

}

public class GameManager : MonoBehaviour

{

 [SerializeField]

 private MonoBehaviour interactableObject;

 private void Start()

 {
 // Check and cast at runtime

 if (interactableObject is IInteractable interactable)

 {

 interactable.Interact();

 }

 }

}

Again, this favors composition over inheritance, similar to the example with Liskov
substitution. The interface segregation principle helps decouple your systems and makes
them easier to modify and extend.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Composition_over_inheritance

© 2024 Unity Technologies 36 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

Dependency inversion principle
The dependency inversion principle (DIP) says that high-level modules should not import
anything directly from low-level modules. Both should depend on abstractions.

Let’s unpack what that means. When one class has a relationship with another, it has a
dependency or coupling. Each dependency in software design carries some risk.

If one class knows too much about how another class works, modifying the first class can
damage the second or vice versa. A high degree of coupling is considered unclean code
practice. An error in one part of the application can snowball into many.

Ideally, aim for as few dependencies between classes as possible. Each class also needs its
internal parts to work together in unison, rather than relying on connections to the outside.
Your object is considered cohesive when it functions on internal or private logic.

In the best scenario, aim for loose coupling and high cohesion.

 Strive for loose coupling with high cohesion.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/Coupling_(computer_programming)

© 2024 Unity Technologies 37 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

You need to be able to modify and expand your game application. If it’s fragile and resistant to
modification, investigate how it’s currently structured.

The dependency inversion principle can help reduce this tight coupling between classes.
When building classes and systems in your application, some are naturally “high-level” and
some “low-level”. A high-level class depends on a lower-level class to get something done.
SOLID tells us to switch this up.

Suppose you are making a game where a character explores the level and triggers a door to
open. You might want to create a class called Switch and another class called Door.

 The Switch (high-level) depends directly on the Door (low-level) class.

On a high-level, you want the character to move to a specific location and for something to
happen. The Switch will be responsible for that.

On a low-level is another class, Door, that contains the actual implementation of how to open
the door geometry. For simplification, a Debug.Log statement is added to represent the logic
of the opening and closing door.

https://unity.com/releases/lts

© 2024 Unity Technologies 38 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

public class Switch : MonoBehaviour
{
 public Door door;
 public bool isActivated;

 public void Toggle()
 {
 if (isActivated)
 {
 isActivated = false;
 door.Close();
 }
 else
 {
 isActivated = true;
 door.Open();
 }
 }
}

public class Door : MonoBehaviour
{
 public void Open()
 {
 Debug.Log(“The door is open.”);
 }
 public void Close()
 {
 Debug.Log(“The door is closed.”);
 }
}

Switch can invoke the Toggle method to open and close the door. It works, but the problem
is that a dependency is wired from the Door directly into the Switch. What if the logic of the
Switch needs to work on more than just a Door for example, to activate a light or giant robot?

You can add extra methods into the Switch class, but you’d be violating the open-closed
principle. You have to modify the original code every time you want to extend functionality.

Once again abstractions come to the rescue. You can sandwich an interface called
ISwitchable in between your classes.

https://unity.com/releases/lts

© 2024 Unity Technologies 39 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

An interface, ISwitchable, between the two classes

ISwitchable just needs a public property so you know whether it’s active, plus a couple of
methods to Activate and Deactivate it.

public interface ISwitchable
{
 public bool IsActive { get; }
 public void Activate();
 public void Deactivate();
}

Then the Switch becomes something like this, depending on an ISwitchable client,
instead of a door directly.

https://unity.com/releases/lts

© 2024 Unity Technologies 40 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

public class Switch : MonoBehaviour
{
 public ISwitchable client;
 public void Toggle()
 {
 if (client.IsActive)
 {
 client.Deactivate();
 }
 else
 {
 client.Activate();
 }
 }
}

On the other hand, you’ll need to rework the Door to implement ISwitchable:

public class Door : MonoBehaviour, ISwitchable
{
 private bool isActive;
 public bool IsActive => isActive;
 public void Activate()
 {
 isActive = true;
 Debug.Log(“The door is open.”);
 }

 public void Deactivate()
 {
 isActive = false;
 Debug.Log(“The door is closed.”);
 }

}

Now you’ve inverted the dependency. The interface creates an abstraction in between them
rather than hardwiring the switch to the door exclusively. The Switch no longer depends
directly on the door-specific methods (Open and Close). Instead it uses the ISwitchable’s
Activate and Deactivate.

https://unity.com/releases/lts

© 2024 Unity Technologies 41 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

This small but significant change promotes reusability. Whereas Switch would only work with
a Door previously, now it works with anything that implements ISwitchable.

This enables you to make more classes that the Switch can activate. The high-level Switch
will work, whether it’s a trap door or a laser beam. It just needs a compatible client that
implements ISwitchable.

 The Switch can now activate any ISwitchable object.

Like the rest of SOLID, the dependency inversion principle asks you to examine how you
normally set up relationships between your classes. Conveniently scale your project with loose
coupling.

Example: Sample project

The sample project showcases dependency inversion with an implementation of a door and
trap example. Click each respective switch to activate the device in question. Remember that
high-level modules (like the switch) should not depend on low-level modules (like the door or
trap).

Instead, the ISwitchable interface acts as an abstraction layer between them. It defines a
contract for activating or deactivating objects, regardless of their specific implementations.

https://unity.com/releases/lts

© 2024 Unity Technologies 42 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

The Door and Trap classes implement the ISwitchable interface. This allows them to be
controlled by other parts of the system without direct knowledge of their concrete behaviors.

Thus, the Door can manage the mechanics of opening and closing, while the Trap can handle
activation and deactivation logic, all under the same interface.

By depending on an abstraction rather than concrete implementations, the system can easily
be extended with new types of switchable objects.

 In dependency inversion, high-level modules should not depend on low-level modules. Both depend on abstractions.

https://unity.com/releases/lts

© 2024 Unity Technologies 43 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

 Interfaces versus abstract classes
In keeping with the philosophy of favoring “composition over inheritance,” many examples
in this guide use interfaces. However, you can follow many of the design principles and
patterns with abstract classes as well.

Both are valid ways to achieve abstractions in C#. Which one you use depends on your
situational needs.

Abstract classes

The abstract keyword lets you define a base class, so you can pass common
functionality (methods, fields, constants, etc.) to subclasses through inheritance.

You can’t instantiate an abstract class directly. Instead you’ll need to derive a concrete
class.

In the preceding example, an abstract class could achieve the same dependency
inversion, just with a different approach. So rather than use an interface, derive a
concrete class (e.g., Light or Door) from an abstract class called Switchable.

 Using abstract classes

https://unity.com/releases/lts

© 2024 Unity Technologies 44 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

Inheritance defines an “is a” relationship. Shown in the diagram above are all “switchable”
things that can turn on and off.

The advantage of abstract classes is they can have fields and constants as well as static
members. They can also apply more restricted access modifiers, like protected and
private. Unlike interfaces, abstract classes let you implement logic that enables you to
share core functionality between your concrete classes.

Inheritance works well until you want to create a derived class that has characteristics of
two different base classes. In C#, you can’t inherit from more than one base class.

 Choosing between base classes

If you had another abstract class for all Robots in your game, then it’s harder to decide
what to derive from. Do you use the Robot or Switchable base class?

https://unity.com/releases/lts

© 2024 Unity Technologies 45 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

Interfaces

As seen in the interface segregation principle, interfaces give you more flexibility when
something doesn’t fit neatly into the paradigm of inheritance. You can pick and choose
more easily with a “has a” relationship.

However, interfaces only contain declarations of their members. A class that actually
implements the interface will be responsible for fleshing out the specific logic.

Thus, it’s not always an either-or decision. Use abstract classes to define the base
functionality where you want to share code. Use interfaces to define peripheral abilities
where you need flexibility.

In this example, you can derive the NPC from the Robot base class to inherit its core
features, but then use an interface ISwitchable to add the ability to switch the NPC on
and off.

 The NPC Robot using both

https://unity.com/releases/lts

© 2024 Unity Technologies 46 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

Keep in mind the following differences between abstract classes and interfaces:

Abstract class Interface

Fully or partially implements methods Declares methods but can’t implement them

Declares/uses variables and fields
Declares only methods and properties
(but not fields)

Has static members Can’t declare/use static members

Uses constructors Can’t use constructors

Uses all access modifiers (protected,
private, etc.)

Can’t use access modifiers
(all members are implicitly public)

Remember: A class can inherit from at most one abstract class, but it can implement
multiple interfaces.

https://unity.com/releases/lts

© 2024 Unity Technologies 47 of 147 | unity.com

| Using this guide | The SOLID principles | Design patterns for game development |

A SOLID understanding
Getting to know the SOLID principles is a matter of daily practice. Think of them as five basic
rules to always keep in mind while coding. Here’s a handy recap:

	— Single responsibility: Make sure classes only do one thing and have only one reason to
change.

	— Open-closed: You should be able to extend the functionality of a class without changing
how it already works.

	— Liskov substitution: Subclasses should be substitutable for their base classes.

	— Interface segregation: Keep your interfaces short with few methods. Clients only
implement what they need.

	— Dependency inversion: Depend on abstractions. Don’t depend directly from one
concrete class to another.

The SOLID principles are guidelines to help you write cleaner code so that it’s more efficient to
maintain and extend. SOLID principles have dominated software design for nearly two decades
at the enterprise level because they’re well-suited for large applications that must scale.

In some cases, adhering to SOLID can result in additional work up front. You might need to
refactor some of your functionality into abstractions or interfaces. However, there is often a
payoff in long-term savings.

Determine for yourself how strictly you will apply the principles to your projects; they’re
not absolutes. There are nuances, and numerous ways to implement each one that are not
covered here. Remember: the thinking behind the principle is more important than any specific
syntax.

When unsure about how to use them, refer back to the KISS principle. Keep it simple, and
don’t try to force the principles into your scripts just for the sake of doing it. Let them
organically work themselves into place through necessity.

For more information, be sure to check out the Unity SOLID presentation from Unite Austin.

https://unity.com/releases/lts
https://www.youtube.com/watch?v=eIf3-aDTOOA?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=game-programming-patterns-ebook

© 2024 Unity Technologies 48 of 147 | unity.com

Design patterns for
game development

Once you understand the SOLID principles, you’ll want to dive deeper into design patterns.

Design patterns let you repurpose well-known solutions for everyday software problems. A
pattern, however, isn’t an off-the-shelf library or framework. Nor is it an algorithm, which is a
specific set of steps to achieve a result.

Instead, think of a design pattern more like a blueprint. It’s a general plan that leaves the actual
construction up to you. Two programs can follow the same pattern but have very different code.

When developers encounter the same problem in the wild, many of them will inevitably come
up with similar solutions. Once such a solution becomes repeated enough, someone might
“discover” a pattern and formally give it a name.

The Gang of Four
Many of today’s software design patterns stem from the seminal work, Design Patterns:
Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides. This book describes 23 such patterns identified in a variety of
day-to-day applications.

The original authors are often referred to as the “Gang of Four” (GoF), and you’ll also hear the
original patterns dubbed the GoF patterns. While the examples cited are mostly in C++ (and
Smalltalk), you can apply their ideas to any object-oriented language, such as C#.

https://unity.com/releases/lts

© 2024 Unity Technologies 49 of 147 | unity.com

| The SOLID principles | Design patterns for game development | Factory pattern |

Since the Gang of Four originally published Design Patterns in 1994, developers have
discovered dozens more object-oriented patterns in a variety of fields. Many engineering
specialities have well-established patterns. Game development is no different.

Learning design patterns
While you can work as a game programmer without studying design patterns, learning them
will only help you become a better developer. After all, design patterns are labeled as such
because they’re common solutions to well-known problems.

Software engineers rediscover them all the time in the normal course of development. You
may have already implemented some of these patterns unwittingly.

Train yourself to look for them. Doing this can help you:

	— Learn object-oriented programming: Design patterns aren’t secrets buried in an
esoteric StackOverflow post. They are common ways to overcome everyday hurdles in
development. They can inform you how many other developers approached the same
issue. Remember, even if you aren’t using patterns, someone else is.

	— Talk to other developers: Patterns can serve as a shorthand when trying to
communicate as a team. Mention the “command pattern” or “object pool” and
experienced Unity developers will know exactly what you’re trying to implement.

	— Explore new frameworks: When you import a built-in package or something from
the Asset Store, inevitably you’ll stumble onto one or more patterns discussed here.
Recognizing design patterns will help you understand how a new framework works and
the thought process involved in its creation.

Of course, not all design patterns apply to every game application. Don’t go looking for them
with Maslow’s hammer; otherwise, you might only find nails.

Like any other tool, a design pattern’s usefulness depends on context. Each one provides a
benefit in certain situations and also comes with its share of drawbacks. Every decision in
software development comes with compromises.

Are you generating a lot of GameObjects on the fly? Does it impact your performance? Can
restructuring your code fix that?

Be aware of these design patterns and when the time is right, pull them from your gamedev
bag of tricks to solve the problem at hand.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Law_of_the_instrument

© 2024 Unity Technologies 50 of 147 | unity.com

| The SOLID principles | Design patterns for game development | Factory pattern |

 Further reading
In addition to the Gang of Four’s Design Patterns: Elements of Reusable Object-Oriented
Software, another standout volume is Game Programming Patterns by Robert Nystrom.
The author details a variety of software patterns in a no-nonsense manner. The web-
based edition is available for free at gameprogrammingpatterns.com.

Patterns within Unity
Unity already implements several established gamedev patterns, saving you the trouble of
writing them yourself. These include:

	— Game loop and update: At the core of all games is an infinite loop that must function
independently of clock speed, since the hardware that powers a game application can
vary greatly. To account for computers of different speeds, game developers often need
to use a fixed timestep (with a set frames-per-second) and a variable timestep where
the engine measures how much time has passed since the previous frame.

Unity takes care of this out of the box, so you don’t have to implement it yourself. You
only need to manage gameplay using MonoBehaviour methods like Update, LateUpdate,
and FixedUpdate. Then, you can modify GameObjects and components for each frame
of the game clock.

	— Prototype: Often you need to copy objects without affecting the original. This creational
pattern solves the problem of duplicating and cloning an object to make other objects
similar to itself. This way you avoid defining a separate class to spawn every type of
object in your game.

Unity’s Prefab system implements a form of prototyping for GameObjects. This allows
you to duplicate a template object complete with its components. Override specific
properties to create Prefab Variants or nest Prefabs inside other Prefabs to create
hierarchies. Use a special Prefab editing mode to edit Prefabs in isolation or in context.

	— Component: Most people working in Unity know this pattern. Instead of creating large
classes with multiple responsibilities, build smaller components that each do one thing.

If you use composition to pick and choose components, you combine them for complex
behavior. Add Rigidbody and Collider components for physics. Add a MeshFilter and
MeshRenderer for 3D geometry. Each GameObject is only as rich and unique as its
collection of components.

Of course, Unity can’t do everything for you. Inevitably you’ll need other patterns that aren’t
built-in. Let’s explore a few of these in the next chapters.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns
https://gameprogrammingpatterns.com
https://gameprogrammingpatterns.com
https://docs.unity3d.com/6000.0/Documentation/Manual/Prefabs.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=game-programming-patterns-ebook
https://docs.unity3d.com/6000.0/Documentation/Manual/PrefabVariants.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=game-programming-patterns-ebook
https://docs.unity3d.com/6000.0/Documentation/Manual/NestedPrefabs.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=game-programming-patterns-ebook
https://docs.unity3d.com/6000.0/Documentation/Manual/EditingInPrefabMode.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=game-programming-patterns-ebook

© 2024 Unity Technologies 51 of 147 | unity.com

Factory pattern

 A factory can spawn one or more products.

Sometimes it’s helpful to have a special object that creates other objects. Many games spawn
a variety of things over the course of gameplay, and you often don’t know what you need at
runtime until you actually need it.

https://unity.com/releases/lts

© 2024 Unity Technologies 52 of 147 | unity.com

| Design patterns for game development | Factory pattern | Object pool |

The factory pattern designates a special object called – you guessed it – a factory for this
purpose. On one level, it encapsulates many of the details involved in spawning its “products.”
The immediate benefit is to declutter your code.

However, if each product follows a common interface or base class, you can take this a step
further and make it contain more of its own construction logic, hiding it away from the factory
itself. Creating new objects thus becomes more extensible.

You can also subclass the factory to make multiple factories dedicated to specific products.
Doing this helps generate enemies, obstacles, or anything else at runtime.

Example: A simple factory
Imagine you want to create a factory pattern to instantiate items for a game level. You can use
Prefabs to create GameObjects, but you might also want to run some custom behavior when
creating each instance.

Rather than using if statements or a switch to maintain this logic, create an interface called
IProduct and an abstract class called Factory:

public interface IProduct
{
 public string ProductName { get; set; }

 public void Initialize();
}

public abstract class Factory : MonoBehaviour
{
 public abstract IProduct GetProduct(Vector3 position);

 // shared method with all factories
 …

}

Products need to follow a specific template for their methods, but they don’t otherwise share
any functionality. Hence, you define the IProduct interface.

Factories might need some shared common functionality, so this sample uses abstract classes.
Just be mindful of Liskov substitution from the SOLID principles when using subclasses.

https://unity.com/releases/lts

© 2024 Unity Technologies 53 of 147 | unity.com

| Design patterns for game development | Factory pattern | Object pool |

They can result in a structure like this:

 Using an interface to define shared properties and logic between your products

The IProduct interface defines what is common between your products. In this case, you
simply have a ProductName property and any logic the product runs on Initialize.

You can then define as many products as you need (ProductA, ProductB, etc.) so long as
they follow the IProduct interface.

The base class, Factory, has a GetProduct method that returns an IProduct. It’s abstract,
so you can’t make instances of Factory directly. You derive a couple of concrete subclasses
(ConcreteFactoryA and ConcreteFactoryB), which will actually get the different products.

GetProduct in this example takes a Vector3 position so that you can instantiate a Prefab
GameObject more easily at a specific location. A field in each concrete factory also stores the
corresponding template Prefab.

https://unity.com/releases/lts

© 2024 Unity Technologies 54 of 147 | unity.com

| Design patterns for game development | Factory pattern | Object pool |

public class ProductA : MonoBehaviour, IProduct
{
 [SerializeField] private string productName = “ProductA”;
 public string ProductName { get => productName; set => productName
 = value ; }

 private ParticleSystem particleSystem;

 public void Initialize()
 {
 // any unique logic to this product
 gameObject.name = productName;
 particleSystem = GetComponentInChildren<ParticleSystem>();
 particleSystem?.Stop();
 particleSystem?.Play();
 }
}

public class ConcreteFactoryA : Factory
{
 [SerializeField] private ProductA productPrefab;

 public override IProduct GetProduct(Vector3 position)
 {
 // create a Prefab instance and get the product component
 GameObject instance = Instantiate(productPrefab.gameObject,
 position, Quaternion.identity);
 ProductA newProduct = instance.GetComponent<ProductA>();

 // each product contains its own logic
 newProduct.Initialize();

 return newProduct;
 }

}

Here’s the sample ProductA and ConcreteFactoryA.

Here, you’ve made the product classes MonoBehaviours that implement IProduct take
advantage of Prefabs in the factory.

https://unity.com/releases/lts

© 2024 Unity Technologies 55 of 147 | unity.com

| Design patterns for game development | Factory pattern | Object pool |

Note how each product can have its own version of Initialize. The example ProductA
Prefab contains a ParticleSystem, which plays when the ConcreteFactoryA instantiates a
copy. The factory itself does not contain any specific logic for triggering the particles; it only
invokes the Initialize method, which is common to all products.

Explore the sample project to see how the ClickToCreate component switches between
factories to create ProductA and ProductB, which have different behaviors. ProductB plays a
sound when it spawns, while ProductA sets off a particle effect.

Pros and cons
You’ll benefit the most from the factory pattern when setting up many products. Defining new
product types in your application doesn’t change your existing ones or require you to modify
previous code.

Separating each product’s internal logic into its own class keeps the factory code relatively
short. Each factory only knows to invoke Initialize on each product without being privy to
the underlying details.

The downside is that you create a number of classes and subclasses to implement the
pattern. Like the other patterns, this introduces a bit of overhead, which may be unnecessary
if you don’t have a large variety of products.

 One product plays a sound, while another plays particles. Both use the same interface.

https://unity.com/releases/lts

© 2024 Unity Technologies 56 of 147 | unity.com

| Design patterns for game development | Factory pattern | Object pool |

Improvements
The implementation of the factory pattern can vary widely from what’s shown here. Consider
the following adjustments when building your own factory pattern:

	— Use a dictionary to search for products: You might want to store your products as
key-value pairs in a dictionary. Use a unique string identifier (e.g., the Name or some
ID) as the key and the type as a value. This can make retrieving products and/or their
corresponding factories more convenient.

	— Make the factory (or a factory manager) static: This makes it easier to use but requires
additional setup. Static classes won’t appear in the Inspector, so you will need to make
your collection of products static as well.

	— Apply it to non-GameObjects and non-MonoBehaviours: Don’t limit yourself to Prefabs
or other Unity-specific components. The factory pattern can work with any C# object.

	— Combine with the object pool pattern: Factories don’t necessarily need to instantiate
or create new objects. They can also retrieve existing ones in the hierarchy. If you are
instantiating many objects at once, (e.g., projectiles from a weapon), use the object pool
pattern for more optimized memory management.

Factories can spawn any gameplay element on an as-needed basis. Note, however, that
creating products is often not their only purpose. You might be using the factory pattern as
part of another larger task (e.g., setting up UI elements in a dialog box of parts of a game level).

https://unity.com/releases/lts

© 2024 Unity Technologies 57 of 147 | unity.com

Object pool

Managing the lifecycle of numerous objects within your game scene is key to achieving
optimal performance. While C#’s automatic memory management system offers convenience
through its garbage collector, this feature can also introduce noticeable stutters or spikes
when objects are frequently created and destroyed.

To mitigate this, consider using the object pool pattern. This technique optimizes performance
by reusing GameObjects. Instead of constantly creating and destroying objects, you maintain
a “pool” of pre-initialized, deactivated objects. When you need an object, your application
doesn’t instantiate it. Instead you request the GameObject from the pool and enable it.

After use, an object is deactivated and returned to the pool, avoiding the overhead of
destruction. Ideally, you should initialize the object pool during less noticeable moments (e.g.
during a loading screen), to prevent stutter. This optimization technique is useful whenever
creating and destroying a lot of GameObjects.

If you’ve used Unity’s ParticleSystem, then you have firsthand experience with an object pool.
The ParticleSystem component contains a setting for the max number of particles. This simply
recycles available particles, preventing the effect from exceeding a maximum number. The
object pool works similarly, but with any GameObject of your choosing.

https://unity.com/releases/lts
https://gameprogrammingpatterns.com/object-pool.html

© 2024 Unity Technologies 58 of 147 | unity.com

| Factory pattern | Object pool | Singleton pattern |

 An object pool can help you shoot bullets without gameplay stutter.

Example: Simple pool system
Unity includes a built-in object pooling feature via the UnityEngine.Pool namespace. Available
in Unity 2021 LTS and later, this namespace facilitates the management of object pools,
automating aspects like object lifecycle and pool size control.

Creating your own object pool, however, can help you understand the underlying principles
of how the pattern works. Let’s walk through how to build a simple object pool to see its
mechanics in action.

Consider a simple pooling system with two defined MonoBehaviours:

	— An ObjectPool that holds the collection of GameObjects to draw from

	— A PooledObject component added to the Prefab to help each cloned item keep a
reference to the pool

https://unity.com/releases/lts
https://docs.unity3d.com/2021.1/Documentation/ScriptReference/Pool.ObjectPool_1.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=game-programming-patterns-ebook

© 2024 Unity Technologies 59 of 147 | unity.com

| Factory pattern | Object pool | Singleton pattern |

In ObjectPool, you set up fields describing the size of the pool, the PooledObject Prefab that
you want to store, and a collection that will form the pool itself (a stack in this example).

public class ObjectPool : MonoBehaviour
{
 [SerializeField] private int initPoolSize;
 [SerializeField] private PooledObject objectToPool;

 // Store the pooled objects in a collection
 private Stack<PooledObject> stack;

 private void Start()
 {
 SetupPool();
 }

 // Creates the pool (invoke when the lag is not noticeable)
 private void SetupPool()
 {
 stack = new Stack<PooledObject>();
 PooledObject instance = null;

 for (int i = 0; i < initPoolSize; i++)
 {
 instance = Instantiate(objectToPool);
 instance.Pool = this;
 instance.gameObject.SetActive(false);
 stack.Push(instance);
 }
 }

The SetupPool method populates the object pool. Create a new stack of PooledObjects
and then instantiate copies of the objectToPool to fill it with initPoolSize elements.
Invoke SetupPool in Start to make sure that it runs once during gameplay.

https://unity.com/releases/lts

© 2024 Unity Technologies 60 of 147 | unity.com

| Factory pattern | Object pool | Singleton pattern |

You’ll also need methods to retrieve a pooled item (GetPooledObject) and return one to the
pool (ReturnToPool):

 // returns the first active GameObject from the pool
 public PooledObject GetPooledObject()
 {

 // if the pool is not large enough, instantiate a new
 PooledObjects
 if (stack.Count == 0)
 {
 PooledObject newInstance = Instantiate(object
 ToPool);
 newInstance.Pool = this;
 return newInstance;
 }

 // otherwise, just grab the next one from the list
 PooledObject nextInstance = stack.Pop();
 nextInstance.gameObject.SetActive(true);
 return nextInstance;
 }

 public void ReturnToPool(PooledObject pooledObject)
 {
 stack.Push(pooledObject);
 pooledObject.gameObject.SetActive(false);
 }

}

GetPooledObject creates a new PooledObject only if the pool is empty. Otherwise, it
simply returns the next available element. If the pool size is sufficient, most of the time you
should only get a reference to an existing GameObject.

The client calling GetPooledObject then needs to move/rotate the pooled object into place.

https://unity.com/releases/lts

© 2024 Unity Technologies 61 of 147 | unity.com

| Factory pattern | Object pool | Singleton pattern |

Each pooled element will have a small PooledObject component, just to reference the
ObjectPool:

public class PooledObject : MonoBehaviour
{
 private ObjectPool pool;
 public ObjectPool Pool { get => pool; set => pool = value; }

 public void Release()
 {
 pool.ReturnToPool(this);
 }

}

Calling Release disables the GameObject and returns it to the pool queue.

The accompanying project includes an ExampleGun script attached to a GameObject. That
stores a reference to the object pool. When the user shoots, the weapon script invokes its
GetPooledObject method instead of calling Object.Instantiate.

On the projectile itself is an ExampleProjectile script and a PooledObject script. The
ExampleProjectile has a Deactivate method to disable each fired bullet GameObject after
a few seconds, returning it to the available pool.

 Disable and reuse pooled objects

https://unity.com/releases/lts

© 2024 Unity Technologies 62 of 147 | unity.com

| Factory pattern | Object pool | Singleton pattern |

This way, you can appear to fire hundreds of bullets offscreen when in reality, you simply
disable and recycle them. Just make sure your pool size is large enough to show the
concurrently active objects.

If you need to exceed the pool size, the pool can instantiate extra objects. However, most of
the time, it pulls from the existing inactive objects.

If you want to see an implementation of creating an object pool from scratch, refer to the
ManualExample folder in the sample project.

UnityEngine.Pool
Unity includes a built-in object pooling system via the UnityEngine.Pool namespace (available
in Unity 2021 LTS and later), so there’s no need to create your own PooledObject or
ObjectPool classes like in the previous example.

This gives you a stack-based ObjectPool to track your objects with the object pool pattern.
Depending on your needs, you can also use a CollectionPool(List, HashSet, Dictionary, etc.)

The sample project shows how to rebuild the manually-created projectile pool using built-in
ObjectPool from UnityEngine.Pool:

using UnityEngine.Pool;

public class RevisedGun : MonoBehaviour
{
 …

 // Stack-based ObjectPool available with Unity 2021 and above
 private IObjectPool<RevisedProjectile> objectPool;

 // Throw an exception if we try to return an existing item,
 already in the pool
 [SerializeField] private bool collectionCheck = true;

 // Extra options to control the pool capacity and maximum size
 [SerializeField] private int defaultCapacity = 20;
 [SerializeField] private int maxSize = 100;

https://unity.com/releases/lts
https://docs.unity3d.com/2021.1/Documentation/ScriptReference/Pool.ObjectPool_1.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=game-programming-patterns-ebook

© 2024 Unity Technologies 63 of 147 | unity.com

| Factory pattern | Object pool | Singleton pattern |

 private void Awake()
 {
 objectPool = new ObjectPool<RevisedProjectile>
 (CreateProjectile,OnGetFromPool, OnReleaseToPool,
 OnDestroyPooledObject, collectionCheck, defaultCapacity, maxSize);
 }

 // Invoked when creating an item to populate the object pool
 private RevisedProjectile CreateProjectile()
 {
 RevisedProjectile projectileInstance = Instantiate(projectilePrefab);
 projectileInstance.ObjectPool = objectPool;
 return projectileInstance;
 }

 // Invoked when returning an item to the object pool
 private void OnReleaseToPool(RevisedProjectile pooledObject)
 {
 pooledObject.gameObject.SetActive(false);
 }

 // Invoked when retrieving the next item from the object pool
 private void OnGetFromPool(RevisedProjectile pooledObject)
 {
 pooledObject.gameObject.SetActive(true);
 }
 // Invoked when we exceed the maximum number of pooled items (i.e.
 destroy the pooled object)
 private void OnDestroyPooledObject(RevisedProjectile pooledObject)
 {
 Destroy(pooledObject.gameObject);
 }
 private void FixedUpdate()
 {
 …
 }
}

https://unity.com/releases/lts

© 2024 Unity Technologies 64 of 147 | unity.com

| Factory pattern | Object pool | Singleton pattern |

Much of the script works for the original ExampleGun script. The ObjectPool constructor,
however, now includes the helpful ability to set up some logic when:

	— First creating a pooled item to populate the pool

	— Taking an item from the pool

	— Returning an item to the pool

	— Destroying a pooled object (e.g., if you hit a maximum limit)

You must then define some corresponding methods to pass into the constructor.

Note how the built-in ObjectPool also includes options for a default pool size and maximum
pool size. Items exceeding the max pool size trigger an action to self-destruct, keeping
memory usage in check.

The projectile script gets a small modification to keep a reference to the ObjectPool. This
makes releasing the object back to the pool a little more convenient.

public class RevisedProjectile : MonoBehaviour
{
 …

 private IObjectPool<RevisedProjectile> objectPool;

 // public property to give the projectile a reference to its
 ObjectPool
 public IObjectPool<RevisedProjectile> ObjectPool { set => object
 Pool = value; }

 …

}

The UnityEngine.Pool API makes setting up object pools faster, now that you don’t have to
rebuild the pattern from scratch. That’s one less wheel to reinvent.

Pros and cons
Object pools are a powerful tool for optimizing performance, but note there are considerations
associated with every design pattern.

The object pool offers these advantages:

	— Reduced garbage collection overhead: Reusing objects instead of creating and
destroying them reduces the need for garbage collection. This can prevent performance
spikes and stutters at runtime.

https://unity.com/releases/lts
https://docs.unity3d.com/2021.1/Documentation/ScriptReference/Pool.ObjectPool_1-ctor.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=game-programming-patterns-ebook
https://docs.unity3d.com/2021.1/Documentation/ScriptReference/Pool.ObjectPool_1.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=game-programming-patterns-ebook

© 2024 Unity Technologies 65 of 147 | unity.com

| Factory pattern | Object pool | Singleton pattern |

	— Improved performance: Initializing objects ahead of time and reactivating them when
needed can lead to smoother performance in certain fast-paced games (e.g., shooters).

	— Optimized initialization: Optimize resources and application startup times by spreading
object creation over less critical moments.

Keep in mind, however, these drawbacks:

	— Increased complexity: Object pools require more management. Be sure to initialize and
release objects properly. Otherwise, this can introduce errors or bugs.

	— Memory usage: While object pools reduce garbage collection, they can lead to higher
static memory usage. Object pools store a predefined number of objects in memory,
even if they are unused. Balance the pool size according to your project needs.

	— More management: Determining the optimal size of an object pool can be challenging.
Too small of a pool might lead to frequent allocations, while too large of a pool may
underutilize the allocated memory.

Improvements
The example above is a simple one. When deploying an object pool for actual projects,
consider the following upgrades:

	— Make it static or a singleton: If you need to generate pooled objects from a variety of
sources, consider making the object pool static and reusable. This makes it accessible
anywhere in your application but precludes use of the Inspector. Alternatively, combine
the object pool pattern with the singleton pattern to make it globally accessible for ease
of use.

	— Use a dictionary to manage multiple pools: If you have a number of different Prefabs
that you want to pool, store them in separate pools and store a key-value pair so you
know which pool to query (the InstanceID of the Prefab can work as the unique key).

	— Remove unused GameObjects creatively: Part of utilizing an object pool effectively
is hiding unused objects and returning them to the pool. Use every opportunity to
deactivate a pooled object (e.g., offscreen, hidden by explosions, etc.)

	— Check for errors: Avoid releasing an object that is already in the pool. When creating an
instance of an ObjectPool<T>, you can set the collectionCheck parameter to true.
This throws an exception in the Editor if you try to return an object to the pool that is
already in it.

	— Add a maximum size/cap: Lots of pooled objects consume memory. Use the maxSize
parameter in the ObjectPool constructor to cap the size of your pool.

How you use object pools will vary by application. This pattern commonly appears when a gun
or weapon needs to fire multiple projectiles like in a bullet hell shooter.

Every time you instantiate a large number of objects, you run the risk of causing a small pause
from a garbage-collection spike. An object pool alleviates this issue to keep your gameplay
smooth.

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/Object.GetInstanceID.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=game-programming-patterns-ebook
https://docs.unity3d.com/ScriptReference/Pool.ObjectPool_1-ctor.html
https://docs.unity3d.com/ScriptReference/Pool.ObjectPool_1-ctor.html
https://docs.unity3d.com/ScriptReference/Pool.ObjectPool_1-ctor.html
https://docs.unity3d.com/ScriptReference/Pool.ObjectPool_1-ctor.html

© 2024 Unity Technologies 66 of 147 | unity.com

Singleton pattern

Singletons get a bad rap. If you’re new to Unity development, the singleton is likely one of the
first recognizable patterns that you will encounter. It’s also one of the most maligned design
patterns.

According to the original Gang of Four, the singleton pattern:

	— Ensures that a class can only instantiate one instance of itself

	— Gives global access to that single instance

This is useful if you need to have exactly one object that coordinates actions across the entire
scene. For example, you might want exactly one game manager in your scene to direct the main
game loop. You also probably only want one file manager writing to your filesystem at a time.
Central, manager-level objects like these tend to be good candidates for the singleton pattern.

 The SimpleSingleton destroys any instances beyond the first.

https://unity.com/releases/lts

© 2024 Unity Technologies 67 of 147 | unity.com

| Object pool | Singleton pattern | Command pattern |

In Game Programming Patterns, it says that singletons do more harm than good and lists it as
an anti-pattern. This poor reputation is because the pattern’s ease of use lends itself to abuse.
Developers tend to apply singletons in inappropriate situations, introducing unnecessary
global states or dependencies.

Let’s examine how to build a singleton in Unity and weigh its strengths and weaknesses. Then
you can decide whether it’s worth incorporating into your application.

Example: Simple singleton
One of the simplest singletons might look like this:

using UnityEngine;

public class SimpleSingleton : MonoBehaviour
{
 public static SimpleSingleton Instance;

 private void Awake()
 {
 if (Instance == null)
 {
 Instance = this;
 }
 else
 {
 Destroy(gameObject);
 }
 }
}

The public static Instance will hold the one instance of Singleton in the scene.

In the Awake method, check if it’s already set. If Instance is currently null, then Instance gets
set to this specific object. This must be the first singleton in the scene.

Otherwise, this instance must be a duplicate; you call Destroy(gameObject) to guarantee
your singleton only has one such component in the scene.

If you attach the script to more than one GameObject in the hierarchy at runtime, the logic in
Awake will keep the first object and then discard the rest.

https://unity.com/releases/lts

© 2024 Unity Technologies 68 of 147 | unity.com

| Object pool | Singleton pattern | Command pattern |

 The singleton pattern only allows one instance.

The Instance field is public and static. Any component has global access to the lone
singleton from anywhere in the scene.

Persistence and lazy instantiation
The SimpleSingleton works as written. However, it does suffer from two issues:

Loading a new scene destroys the GameObject.

	— You need to set up the singleton in the hierarchy before using it.

	— Because the singleton often serves as an omnipresent manager script, you can benefit
from making it persistent using a DontDestroyOnLoad.

https://unity.com/releases/lts

© 2024 Unity Technologies 69 of 147 | unity.com

| Object pool | Singleton pattern | Command pattern |

Further, you can use lazy instantiation to build the singleton automatically when you first need
it. You only need some logic to create a GameObject and then add the appropriate Singleton
component.

The improved singleton looks something like this:

 public class Singleton : MonoBehaviour
 {
 private static Singleton instance;
 public static Singleton Instance
 {
 get
 {
 if (instance == null)
 {
 SetupInstance();
 }
 return instance;
 }
 }

 private void Awake()
 {
 if (instance == null)
 {
 instance = this;
 DontDestroyOnLoad(this.gameObject);
 }
 else
 {
 Destroy(gameObject);
 }
 }

 private static void SetupInstance()
 {
 instance = FindObjectOfType<Singleton>();
 if (instance == null)
 {
 GameObject gameObj = new GameObject();
 gameObj.name = “Singleton”;
 instance = gameObj.AddComponent<Singleton>();
 DontDestroyOnLoad(gameObj);
 }
 }

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Lazy_initialization

© 2024 Unity Technologies 70 of 147 | unity.com

| Object pool | Singleton pattern | Command pattern |

Instance is now a public property referring to the private instance backing field. The first
time you refer to the singleton, check for the existence of Instance in the getting. If it doesn’t
exist, the SetupInstance method creates a GameObject with the appropriate component.

DontDestroyOnLoad(gameObject) prevents a scene load from clearing the singleton from
the hierarchy. The singleton instance is now persistent, staying active even if you change
scenes in your game.

Using generics
Neither version of the script addresses how to create different singletons within the same
scene. For example, if you want a singleton that behaves as an AudioManager and another
singleton as a GameManager, they can’t coexist right now. You’ll need to duplicate the
relevant code and paste the logic into each class.

Instead, make a generic version of the script like so:

public class Singleton<T> : MonoBehaviour where T : Component
{
 private static T instance;
 public static T Instance
 {
 get
 {
 if (instance == null)
 {
 instance = (T)FindObjectOfType(typeof(T));
 if (instance == null)
 {
 SetupInstance();
 }
 }
 return instance;
 }
 }

 public virtual void Awake()
 {
 RemoveDuplicates();
 }

 private static void SetupInstance()
 {
 instance = (T)FindObjectOfType(typeof(T));

 if (instance == null)
 {

https://unity.com/releases/lts

© 2024 Unity Technologies 71 of 147 | unity.com

| Object pool | Singleton pattern | Command pattern |

 GameObject gameObj = new GameObject();
 gameObj.name = typeof(T).Name;
 instance = gameObj.AddComponent<T>();
 DontDestroyOnLoad(gameObj);
 }
 }

 private void RemoveDuplicates()
 {
 if (instance == null)
 {
 instance = this as T;
 DontDestroyOnLoad(gameObject);
 }
 else
 {
 Destroy(gameObject);
 }
 }
}

This allows you to turn any class into a singleton. When you declare your class, simply inherit
from the generic singleton. For example, you can make a MonoBehaviour called GameManager
into a singleton by declaring it like so:

public class GameManager: Singleton<GameManager>
{
 // ...
}

Then you can always refer to the public static GameManager.Instance whenever you need it.

https://unity.com/releases/lts

© 2024 Unity Technologies 72 of 147 | unity.com

| Object pool | Singleton pattern | Command pattern |

Pros and cons
Singletons are unlike the other patterns in this guide in that they break with SOLID principles in
several respects. Many developers dislike them for a variety of reasons:

	— Singletons require global access: Because you use them as global instances, they can
hide many dependencies, making bugs much harder to troubleshoot.

	— Singletons make testing difficult: Unit tests must be independent of each other.
Because the singleton can change the state of many GameObjects across the scene,
they can interfere with your testing.

	— Singletons encourage tight coupling: Most of the patterns in this guide attempt to
decouple dependencies. Singletons do the opposite. Tight coupling makes refactoring
difficult. If you change one component, you can affect any component connected to it,
leading to unclean code.

The nays against singletons are considerable. If you’re building an enterprise-level game that
you expect to maintain for years to come, you might want to steer clear of singletons.

But many games are not enterprise-level applications. You don’t need to extend them
continuously the same way you might for business software.

In fact, singletons offer some benefits that you may find attractive if you’re building a small
game that doesn’t need extensibility:

	— Singletons are relatively quick to learn: The core pattern itself is somewhat
straightforward.

	— Singletons are user-friendly: To use your singleton from another component, simply
reference the public and static instance. The singleton instance is always available on
demand from any object in your scene.

	— Singletons are performant: Because you always have global access to the static
singleton instance, you can avoid caching the results of GetComponent or Find
operations, which tend to be slow.

In this way, you can make a manager object (e.g., game flow manager or audio manager) that
is always accessible from every other GameObject in your scene. Also, if you’ve implemented
the object pool, you can design your pooling system as a singleton to make getting pooled
objects easier.

If you decide to use singletons in your project, keep them to a minimum. Don’t use them
indiscriminately. Reserve the singletons for a handful of scripts that can benefit from global
access.

https://unity.com/releases/lts

© 2024 Unity Technologies 73 of 147 | unity.com

Command pattern

One of the original Gang of Four patterns, command is useful whenever you want to track a
specific series of actions. You’ve likely seen the command pattern at work if you’ve played a
game that uses undo/redo functionality or keeps your input history in a list. Imagine a strategy
game where the user can plan several turns before actually executing them. That’s the
command pattern.

Instead of invoking a method directly, the command pattern allows you to encapsulate one or
more method calls as a “command object.”

 Storing actions with the command pattern

Storing these command objects in a collection like a queue or a stack allows you to control
the timing of their execution. This functions as a small buffer. You can then potentially delay a
series of actions for later playback or undo them.

https://unity.com/releases/lts

© 2024 Unity Technologies 74 of 147 | unity.com

| Singleton pattern | Command pattern | State pattern |

To implement the command pattern, you need a general object that will contain your action.
This command object will hold what logic to perform and how to undo it.

The command object and command invoker
There are a number of ways to implement this, but here’s one version that uses an interface:

public interface ICommand
{
 void Execute();
 void Undo();
}

In this case, every gameplay action will apply the ICommand interface (you could also
implement this with an abstract class).

Each command object will be responsible for its own Execute and Undo methods. Thus,
adding more commands to your game won’t affect any existing ones.

You’ll need another class to execute and undo commands. Create a CommandInvoker class. In
addition to the ExecuteCommand and UndoCommand methods, it has an undo stack to hold the
sequence of command objects.

public class CommandInvoker
{
 private static Stack<ICommand> undoStack = new Stack<ICommand>();

 public static void ExecuteCommand(ICommand command)
 {
 command.Execute();
 undoStack.Push(command);
 }

 public static void UndoCommand()
 {
 if (undoStack.Count > 0)
 {
 ICommand activeCommand = undoStack.Pop();
 activeCommand.Undo();
 }
 }

}

https://unity.com/releases/lts

© 2024 Unity Technologies 75 of 147 | unity.com

| Singleton pattern | Command pattern | State pattern |

Example: Undoable movement
Let’s imagine you want to move your player around a maze in your application. You could
create a PlayerMover responsible for shifting the player’s position:

public class PlayerMover : MonoBehaviour
{
 [SerializeField] private LayerMask obstacleLayer;
 private const float boardSpacing = 1f;

 public void Move(Vector3 movement)
 {
 transform.position = transform.position + movement;
 }

 public bool IsValidMove(Vector3 movement)
 {
 return !Physics.Raycast(transform.position, movement, board
 Spacing, obstacleLayer);
 }
}

You’ll pass in a Vector3 into the Move method to guide the player along the four compass
directions. You can also use a raycast to detect the walls in the appropriate LayerMask. Of
course, implementing what you want to apply to the command pattern is separate from the
pattern itself.

The command pattern can make actions undoable.

https://unity.com/releases/lts

© 2024 Unity Technologies 76 of 147 | unity.com

| Singleton pattern | Command pattern | State pattern |

To follow the command pattern, capture the PlayerMover’s Move method as an object.
Instead of calling Move directly, create a new class, MoveCommand, that implements the
ICommand interface:

public class MoveCommand : ICommand
{
 PlayerMover playerMover;
 Vector3 movement;
 public MoveCommand(PlayerMover player, Vector3 moveVector)
 {
 this.playerMover = player;
 this.movement = moveVector;
 }

 public void Execute()
 {
 playerMover.Move(movement);
 }

 public void Undo()
 {
 playerMover.Move(-movement);
 }
}

ICommand requires an Execute method to store what you’re trying to accomplish. Whatever
logic you want to accomplish goes in here, so invoke Move with the movement vector.

ICommand also needs an Undo method to restore the scene back to its previous state. In this
case, the Undo logic subtracts the movement vector, essentially pushing the player in the
opposite direction.

The MoveCommand stores any parameters that it needs to execute. Set these up with a
constructor. In this case, you save the appropriate PlayerMover component and the
movement vector.

Once you create the command object and save its needed parameters, use the
CommandInvoker’s static ExecuteCommand and UndoCommand methods to pass in your
MoveCommand. This runs the MoveCommand’s Execute or Undo and tracks the command object
in the undo stack.

https://unity.com/releases/lts

© 2024 Unity Technologies 77 of 147 | unity.com

| Singleton pattern | Command pattern | State pattern |

 The CommandInvoker, ICommand, and MoveCommand

The InputManager doesn’t call the PlayerMover’s Move method directly. Instead, add
an extra method, RunMoveCommand, to create a new MoveCommand and send it to the
CommandInvoker.

private void RunPlayerCommand(PlayerMover playerMover, Vector3 movement)
{
 if (playerMover == null)
 {
 return;
 }

 if (playerMover.IsValidMove(movement))
 {
 ICommand command = new MoveCommand(playerMover, movement);
 CommandInvoker.ExecuteCommand(command);
 }
}

Then, set up the various onClick events of the UI Buttons to call RunPlayerCommand with the
four movement vectors.

Check out the sample project for implementation details for the InputManager or set up your
own input using the keyboard or gamepad. Your player can now navigate the maze. Click the
Undo button so you can backtrack to the beginning square.

https://unity.com/releases/lts

© 2024 Unity Technologies 78 of 147 | unity.com

| Singleton pattern | Command pattern | State pattern |

Pros and cons
Implementing replayability or undoability is as simple as generating a collection of command
objects. You can also use the command buffer to play back actions in sequence with specific
controls.

For example, think about a fighting game where a series of specific button clicks triggers a
combo move or attack. Storing player actions with the command pattern makes setting up
such combos much simpler.

On the flip side, the command pattern introduces more structure, just like the other design
patterns. You’ll have to decide where these extra classes and interfaces provide enough
benefit for deploying command objects in your application.

Improvements
Once you learn the basics, you can affect the timing of commands and play them back in
succession or reverse, depending on the context.

Consider the following when incorporating the command pattern:

	— Create more commands: The sample project only includes one type of command object,
the MoveCommand. You can create any number of command objects that implement
ICommand and track them using the CommandInvoker.

	— Adding redo functionality is a matter of adding another stack: When you undo a
command object, push it onto a separate stack that tracks redo operations. This way
you can quickly cycle through the undo history or redo those actions. Clear out the redo
stack when the user invokes an entirely new movement (you can find an implementation
in the accompanying sample project).

 Undo and redo stacks

https://unity.com/releases/lts

© 2024 Unity Technologies 79 of 147 | unity.com

| Singleton pattern | Command pattern | State pattern |

	— Use a different collection for your buffer of command objects: A queue might be
handier if you want first in, first out (FIFO) behavior. If you use a list, track the currently
active index; commands before active index are undoable. Commands after the index
are redoable.

 A list or other collection acts as a command buffer.

	— Limit the size of the stacks: Undo and redo operations can quickly blow up out of
control. Limit the stacks to the last number of commands.

	— Pass any necessary parameters into the constructor: This helps encapsulate the logic
as seen in the MoveCommand example.

The CommandInvoker, like other external objects, doesn’t see the inner workings of the
command object, only invoking Execute or Undo. Give the command object any data needed
to work when calling the constructor.

https://unity.com/releases/lts

© 2024 Unity Technologies 80 of 147 | unity.com

State pattern

Imagine constructing a playable character. At one moment, the character may be standing on
the ground. Move the controller, and it appears to run or walk. Press the jump button and the
character leaps into midair. A few frames later, it lands and reenters its idle, standing position.

States and state machines
Games are interactive, and they force us to track many systems that change at runtime. If you
draw a diagram that represents the different states of your character, you might come up with
something like this:

 A simple state diagram

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/State_diagram

© 2024 Unity Technologies 81 of 147 | unity.com

| Command pattern | State pattern | Observer pattern |

This describes something called a finite-state machine (FSM), which resembles a flowchart
with a few differences:

	— The diagram consists of a number of states (Idling/Standing, Walking, Running, Jumping,
and so on), and only one current state is active at a given time.

	— Each state can trigger a transition to one other state based on conditions at runtime.

	— When a transition occurs, the output state becomes the new active state.

In game development, one typical use case for an FSM is for tracking the internal state of a
game actor or prop.

To set up a basic state machine in code, you might use a naive approach with an enum and a
switch statement.

public enum PlayerControllerState
{
 Idle,
 Walk,
 Jump
}

public class UnrefactoredPlayerController : MonoBehaviour
{
 private PlayerControllerState state;

 private void Update()
 {
 GetInput();
 switch (state)
 {
 case PlayerControllerState.Idle:
 Idle();
 break;
 case PlayerControllerState.Walk:
 Walk();
 break;
 case PlayerControllerState.Jump:
 Jump();
 break;
 }
 }
 private void GetInput()
 {

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Finite-state_machine

© 2024 Unity Technologies 82 of 147 | unity.com

| Command pattern | State pattern | Observer pattern |

 // process walk and jump controls
 }
 private void Walk()
 {
 // walk logic
 }
 private void Idle()
 {
 // idle logic
 }
 private void Jump()
 {
 // jump logic
 }
}

This would work, but the PlayerController script can get messy quickly. Adding more states
and complexity can make the class balloon up. It also requires us to revisit the PlayerController
script’s internals each time we want to make a change.

In keeping with SOLID principles, we want to make our classes shorter and more focused.
Keeping them closed for modification but open for extension ensures better scalability and
manageability.

Example: Simple state pattern
Fortunately, the state pattern can help you reorganize the logic. According to the original
Gang of Four, the state pattern solves two problems:

	— An object should change its behavior when its internal state changes.

	— State-specific behavior is defined independently. Adding new states does not impact
the behavior of existing states.

While the above example UnrefactoredPlayerController class can track state changes,
it does not satisfy the second issue. You want to minimize the impact on existing states when
you add new ones. Instead, you can encapsulate a state as an object.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/State_pattern

© 2024 Unity Technologies 83 of 147 | unity.com

| Command pattern | State pattern | Observer pattern |

Imagine structuring each state like this:

 The encapsulated state with an Entry, Exit, and Execute

Here you enter the state and loop each frame until a condition causes control flow to exit. To
implement this pattern, create an interface, IState:

public interface IState
{

 public void Enter()
 {
 // code that runs when we first enter the state
 }

 public void Execute()
 {
 // per-frame logic, include condition to transition to a new
 state
 }

 public void Exit()
 {
 // code that runs when we exit the state
 }
}

https://unity.com/releases/lts

© 2024 Unity Technologies 84 of 147 | unity.com

| Command pattern | State pattern | Observer pattern |

Each concrete state in your game will implement the IState interface:

	— An Entry: This logic executes when first entering the state.

	— Execute: This logic runs every frame (sometimes called Tick or Update). You can further
segment the Execute method as MonoBehaviour does with Update, FixedUpdate,
LateUpdate, and so on.

Any functionality in the Execute runs each frame until a condition is detected that
triggers a state change.

	— An Exit: Code here runs before leaving the state and transitioning to a new state.

You’ll need to create a class for each state that implements IState. In the sample project, a
separate class has been set up for WalkState, IdleState, and JumpState.

Another class, the StateMachine, will then manage how control flow enters and exits the
states. With the three example states, the StateMachine could look like this:

 [Serializable]
public class StateMachine
{
 public IState CurrentState { get; private set; }

 public WalkState walkState;
 public JumpState jumpState;
 public IdleState idleState;

 public void Initialize(IState startingState)
 {
 CurrentState = startingState;
 startingState.Enter();
 }

 public void TransitionTo(IState nextState)
 {
 CurrentState.Exit();
 CurrentState = nextState;
 nextState.Enter();
 }

 public void Execute()
 {
 if (CurrentState != null)
 {
 CurrentState.Execute();
 }
 }
}

https://unity.com/releases/lts

© 2024 Unity Technologies 85 of 147 | unity.com

| Command pattern | State pattern | Observer pattern |

To follow the pattern, the StateMachine references a public object for each state under its
management (in this case, walkState, jumpState, and idleState). Because StateMachine
doesn’t inherit from MonoBehaviour, use a constructor to set up each instance:

public StateMachine(PlayerController player)
{
 this.walkState = new WalkState(player);
 this.jumpState = new JumpState(player);
 this.idleState = new IdleState(player);
}

You can pass in any parameters needed to the constructor. In the sample project, a
PlayerController is referenced in each state. You then use that to update each state per frame
(see the IdleState example below).

Note the following about the StateMachine:

	— The Serializable attribute allows us to display the StateMachine (and its public fields) in
the Inspector. Another MonoBehaviour (e.g., a PlayerController or EnemyController) can
then use the StateMachine as a field.

	— The CurrentState property is read-only. The StateMachine itself does not explicitly set
this field. An external object like the PlayerController can then invoke the Initialize
method to set the default State.

	— Each State object determines its own conditions for calling the TransitionTo method
to change the currently active state. You can pass in any necessary dependencies
(including the State Machine itself) to each state when setting up the StateMachine
instance.

In the example project, the PlayerController already includes a reference to the
StateMachine, so you only pass in one player parameter.

Each state object will manage its own internal logic, and you can make as many states
as needed to describe your GameObject or component. Each one gets its own class that
implements IState. In keeping with the SOLID principles, adding more states has minimal
impact on any previously created states.

https://unity.com/releases/lts

© 2024 Unity Technologies 86 of 147 | unity.com

| Command pattern | State pattern | Observer pattern |

Here’s an example of the IdleState:

public class IdleState : IState
{
 private PlayerController player;

 public IdleState(PlayerController player)
 {
 this.player = player;
 }

 public void Enter()
 {
 // code that runs when we first enter the state
 }

 public void Execute()
 {
 // Here we add logic to detect if the conditions exist to
 // transition to another state
 …
 }

 public void Exit()
 {
 // code that runs when we exit the state
 }
}

Again, use the constructor to pass in the PlayerController object. In the example, this player
contains a reference to the StateMachine and everything else needed for the Update logic.
The idleState monitors the Character Controller’s velocity or jump state and then invokes
the StateMachine’s TransitionTo method appropriately.

Review the sample project for the WalkState and JumpState implementation as well. Rather
than have one large class that switches behavior, each state has its own update logic. This
way, states can function independently from one another.

https://unity.com/releases/lts

© 2024 Unity Technologies 87 of 147 | unity.com

| Command pattern | State pattern | Observer pattern |

Pros and cons
The state pattern can help you adhere to the SOLID principles when setting up internal logic
for an object. Each state is relatively small and just tracks the conditions for transitioning into
another state. In keeping with the open-closed principle, you can add more states without
affecting existing ones and avoid cumbersome switch or if statements.

On the other hand, if you only have a few states to track, the extra structure can be overkill.
This pattern might only make sense if you expect your states to grow to a certain complexity.

 The state pattern tracks an object’s internal state.

Improvements
The capsule in the sample project changes color, and the UI updates with the player’s internal
state. In a real-world example, you could have much more complex effects to accompany the
state changes:

	— Combine the state pattern with animation: One common application for the state
pattern is animation. The player or enemy characters are often represented as primitives
(a capsule) on a macro level. Then, you can have animated geometry that reacts to
internal state changes, so the game actor can appear to be running, jumping, swimming,
climbing, etc.

If you’ve used Unity’s Animator window, you’ll notice that its workflow pairs well with the
state pattern. Each animation clip occupies one state, with only one state active at a time.

https://unity.com/releases/lts

© 2024 Unity Technologies 88 of 147 | unity.com

| Command pattern | State pattern | Observer pattern |

 An example of an Animator state graph: Compare its structure with a StateMachine.

	— Add events: To communicate state changes to outside objects, you might want to add
events (see the observer pattern). Having an event on entering or exiting a state can
notify the relevant listeners and have them respond at runtime.

	— Add a hierarchy: As you begin to describe more complex entities with the state pattern,
you might want to implement hierarchical state machines. Inevitably some states will be
similar; for example, if the player or game actor is grounded, it can duck or jump whether
in a WalkingState or RunningState.

If you implement a SuperState, you can keep common behaviors together. Then using
inheritance, you can override anything specific in a sub-state. For example, you might
first declare a GroundedState. You could then inherit a RunningState or WalkingState
from that.

https://unity.com/releases/lts

© 2024 Unity Technologies 89 of 147 | unity.com

| Command pattern | State pattern | Observer pattern |

	— Implement simple AI: Finite-state machines can also be useful in generating basic
enemy AI. An FSM approach to building an NPC brain might look like this:

 A simple AI based on state patterns

Here’s the state pattern at work again in a completely different context. Every state
represents an action, such as attacking, fleeing, or patrolling. Only one state is active at a
time, with each state determining its transition to the next one.

Example: Game states
In the previous example, the character’s material color and UI label update when the player
moves, jumps, or stands idle. Apply the state pattern to wherever you need to track an
object’s internal state. Character animation is a prime example – so much so that Unity
includes a built-in state machine into its AnimatorController.

The sample project includes a more advanced state machine for another practical application
of the state pattern – maintaining your game states. The demo itself uses this state machine
to manage its behavior at runtime.

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/Animations.AnimatorStateMachine.html
https://docs.unity3d.com/ScriptReference/Animations.AnimatorController.html

© 2024 Unity Technologies 90 of 147 | unity.com

| Command pattern | State pattern | Observer pattern |

Inside the Scripts/StateMachine folder are several components to build and customize a
more sophisticated state machine:

	— The StateMachine tracks an object’s current state and handles transitions between
various states. It executes each state’s lifecycle methods and monitors state changes in
a loop.

	— An IState interface defines standardized functionality for each state object (lifecycle
methods such as Enter, Execute, and Exit as well as transitions to other states).

	— AbstractState implements the IState interface and serves as the base class for all
states.

To set up the state pattern, define concrete states:

	— A general purpose State class can execute predefined actions upon entry and
execution.

	— DelayState introduces a waiting period before transitioning to the next state, useful for
progress bars or load screens.

	— LoadSceneState and UnloadLastSceneState are state classes designed for
managing scene transitions. These states can load or unload scenes additively, allowing
us to divide the project content into individual Unity scenes.

To transition to other states, implement logic that responds to specific conditions or events.
This allows for state changes due to game events or user input:

	— The ILink interface defines a transition between states.

	— Implement an EventLink to trigger a transition based on a specific C# event.

	— Implement an EventSOLink to trigger a transition based on a specific ScriptableObject-
based event.

	— Implement a SceneEventSOLink to trigger a transition based on a specific scene-
loading event.

The state machine uses several event channels (using both custom C# events and
ScriptableObject-based events) to communicate with any other systems in the application.

Put all of these together and you can build a state machine that works with many different
types of applications. Just create additional states or transitions as your project requires.

In the sample project, the GameManager uses this state machine to drive the application’s
general flow. The system uses ScriptableObject-based events to transition from the menu UIs
to demo content.

https://unity.com/releases/lts

© 2024 Unity Technologies 91 of 147 | unity.com

| Command pattern | State pattern | Observer pattern |

User interactions (e.g. button clicks) notify the GameManager to change its internal state. The
UI then updates according to this state diagram:

 The GameManager state diagram.

While the example focuses on UI updates, the GameManager states can be customized to
meet your application’s specific needs.

Here, using the state pattern makes it easier to assemble your application from smaller parts.
Each menu button raises an event. That event, in turn, triggers the transition to a new state
and loads the corresponding demo content.

Introducing new functionality is as straightforward as adding a new state and configuring the
necessary transitions. In keeping with SOLID, building a new part to your application does not
affect the existing project.

https://unity.com/releases/lts

© 2024 Unity Technologies 92 of 147 | unity.com

| Command pattern | State pattern | Observer pattern |

Explore the QuizU Project
Want to see more design patterns in action? The QuizU sample project also showcases the
use of MVP and state patterns in its main menus, built using the UI Toolkit. This project also
features a variation of this state machine in the main game loop. You can explore the project
along with its companion series of articles on Unity Discussions.

 The QuizU project uses the state pattern for managing game states.

https://unity.com/releases/lts
https://assetstore.unity.com/packages/essentials/tutorial-projects/quizu-a-ui-toolkit-sample-268492
https://discussions.unity.com/t/welcome-to-the-new-ui-toolkit-sample-project-quizu/308607

© 2024 Unity Technologies 93 of 147 | unity.com

At runtime, any number of things can occur in your game. What happens when you destroy an
enemy? How about when you collect a power-up or complete an objective? You often need
a mechanism that allows some objects to notify others without directly referencing them,
thereby creating unnecessary dependencies.

The observer pattern is a common solution to this sort of problem. It allows your objects to
communicate but stay loosely coupled using a “one-to-many” dependency. When one object
changes states, all dependent objects get notified automatically. This is analogous to a radio
tower that broadcasts to many different listeners.

 The observer pattern functions like a radio tower. The subject broadcasts to the observers.

Observer pattern

https://unity.com/releases/lts

© 2024 Unity Technologies 94 of 147 | unity.com

| State pattern | Observer pattern | Model View Presenter (MVP) |

The object that is broadcasting is called the subject. The other objects that are listening are
called the observers.

This pattern loosely decouples the subject, which doesn’t really know the observers or care
what they do once they receive the signal. While the observers have a dependency on the
subject, the observers themselves don’t know about each other.

Events
The observer pattern is so widespread that it’s built into the C# language. You can design
your own subject-observer classes but it’s usually unnecessary. Remember the point about
reinventing the wheel? C# already implements the pattern using events.

An event is simply a notification that indicates something has happened. It involves a few parts:

	— The publisher (the subject) creates an event based on a delegate, establishing a specific
function signature. The event is just some action that the subject will perform at runtime
(e.g., take damage, click a button, and so on).

	— The subscribers (the observers) then each make a method called an event handler,
which must match the delegate’s signature.

	— Each observer’s event handler subscribes to the publisher’s event. You can have as
many observers join the subscription as necessary. All of them will wait for the event to
trigger.

	— When the publisher signals the occurrence of an event at runtime, you say that it raises
the event. This, in turn, invokes the subscribers’ event handlers, which run their own
internal logic in response.

In this way, you make many components react to a single event from the subject. If the
subject indicates that a button is clicked, the observers could play back an animation or
sound, trigger a cutscene, or save a file. Their response could be anything, which is why you’ll
frequently find the observer pattern used to send messages between objects.

https://unity.com/releases/lts
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/

© 2024 Unity Technologies 95 of 147 | unity.com

| State pattern | Observer pattern | Model View Presenter (MVP) |

 The subject raises the event to notify the observers.

Example: Simple subject and observer
For example, you might define a basic subject/publisher like this:

using UnityEngine;
using System;

public class Subject: MonoBehaviour
{
 public event Action ThingHappened;

 public void DoThing()
 {
 ThingHappened?.Invoke();
 }
}

Here, you inherit from MonoBehaviour to attach to a GameObject more easily, but that’s not
required.

https://unity.com/releases/lts

© 2024 Unity Technologies 96 of 147 | unity.com

| State pattern | Observer pattern | Model View Presenter (MVP) |

While you are free to define your own custom delegate, System.Action works in most cases. If
you need to send parameters with the event, use the Action<T> delegate and pass them as a
List<T> within the angle brackets (up to 16 parameters).

ThingHappened is the actual event, which the subject invokes in the DoThing method.

To listen to the event, you can build an example Observer class. Here you inherit from
MonoBehaviour for convenience, but that’s not required.

public class Observer : MonoBehaviour
{
 [SerializeField] private Subject subjectToObserve;
 private void OnThingHappened()
 {
 // any logic that responds to event goes here
 Debug.Log(“Observer responds”);
 }

 private void OnEnable()
 {
 if (subjectToObserve != null)
 {
 subjectToObserve.ThingHappened += OnThingHappened;
 }
 }

 private void OnDisable()
 {
 if (subjectToObserve != null)
 {
 subjectToObserve.ThingHappened -= OnThingHappened;
 }
 }
}

Attach this component to a GameObject and reference the subjectToObserver in the
Inspector order to listen for the ThingHappened event.

The OnThingHappened method can contain any logic the observer executes in response to
the event. Often developers add the prefix “On” to denote the event handler (just use the
naming convention from your style guide).

https://unity.com/releases/lts
https://docs.microsoft.com/en-us/dotnet/api/system.action?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.action-1?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.collections.generic.list-1?view=net-6.0

© 2024 Unity Technologies 97 of 147 | unity.com

| State pattern | Observer pattern | Model View Presenter (MVP) |

In the Awake or Start, you can subscribe to the event with the += operator. That combines
the observer’s OnThingHappened method with the subject’s ThingHappened.

If anything runs the subject’s DoThing method, that raises the event. Then, the observer’s
OnThingHappened event handler invokes automatically and prints the debug statement.

Note: If you delete or remove the observer at runtime while it’s still subscribed to the
ThingHappened, calling that event could result in an error. Thus, it’s important to unsubscribe
from the event in the MonoBehaviour’s OnDestroy method with -= operator.

Unsubscribing from events in the MonoBehaviour’s OnDestroy method with the -= operator
is crucial. It prevents memory leaks, avoids null references, and keeps the code clean by
managing event subscriptions throughout the Unity object’s lifecycle.

 Naming conventions
There isn’t a single convention for naming the parts of the observer pattern. In your style
guide, be sure to identify how to name these parts:

	— Events: This is the actual action or signal. In this example, the event is called
ThingHappened.

	— Event handlers: This is the logic that happens in response to the event. In
this example, the event handler is prefixed with “On.” The event handler
OnThingHappened executes in response to the ThingHappened event.

	— Event-raising methods: This is a method that invokes the event. In this example,
DoThing is the event-raising method.

Events are often named with descriptive verbs indicating the action or occurrence (e.g.
DoorOpened, DamageReceived). Using a naming convention for the events, their triggers,
and their responses can help make their relationship more clear.

For more information about creating your team’s own C# style guide, see the e-book,
Create a C# style guide: Write cleaner code that scales.

You can apply the observer pattern to nearly everything that happens during the course of
gameplay. For example, your game could raise an event every time the player destroys an
enemy or collects an item. If you need a statistics system that tracks scores or achievements,
the observer pattern could allow you to create one without affecting the original gameplay code.

https://unity.com/releases/lts
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/how-to-combine-delegates-multicast-delegates
https://unity.com/resources/create-code-c-sharp-style-guide-e-book?isGated=false

© 2024 Unity Technologies 98 of 147 | unity.com

| State pattern | Observer pattern | Model View Presenter (MVP) |

Many Unity applications apply events to:

	— Objectives or goals

	— Win/lose conditions

	— PlayerDeath, EnemyDeath, or Damage

	— Item pickups

	— User interface

The subject simply needs to raise an event at the opportune time, and then any number of
observers can subscribe.

 The observer sample scene

In the sample project, the ButtonSubject allows the user to invoke a Clicked event
with the mouse button. Several other GameObjects with the AudioObserver and
ParticleSystemObserver components can then respond in their own ways to the event.

Determining which object is a “subject” and which one is an “observer” only varies by usage.
Anything that raises the event acts as the subject, and anything that responds to the event is
the observer. Different components on the same GameObject can be subjects or observers.
Even the same component can be a subject in one context and an observer in another.

For instance, the AnimObserver in the example adds a little bit of movement to the button
when clicked. It acts as an observer even though it’s part of the ButtonSubject GameObject.

https://unity.com/releases/lts

© 2024 Unity Technologies 99 of 147 | unity.com

| State pattern | Observer pattern | Model View Presenter (MVP) |

 UnityEvents and UnityActions
Unity also includes a separate system of UnityEvents, which uses the UnityAction
delegate from the UnityEngine.Events API.

UnityEvents provide a graphical interface for the observer pattern. These offer an artist-
friendly approach for quick prototyping or for setting up interactions without needing
additional code. If you’ve used Unity’s UI system (e.g., creating a UI Button’s OnClick
event), you already have some experience with it.

 UnityEvents have graphical components for your setup.

In this example, the button’s OnClick event invokes and triggers a response from the
two AudioObservers’ OnThingHappened methods. You can thus set up a subject’s event
without code.

UnityEvents are useful if you want to allow designers or non-programmers to create
gameplay events. However, be aware that they may be slower than their equivalent
events or actions from the System namespace.

Weigh performance versus usage when considering UnityEvents and UnityActions. See the
Create a Simple Messaging System with Events module on Unity Learn for an example.

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/Events.UnityEvent.html
https://docs.unity3d.com/ScriptReference/Events.UnityAction.html
https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/script-Button.html
https://learn.unity.com/tutorial/create-a-simple-messaging-system-with-events

© 2024 Unity Technologies 100 of 147 | unity.com

| State pattern | Observer pattern | Model View Presenter (MVP) |

Pros and cons
Implementing an event adds some extra work but does offer advantages:

	— The observer pattern helps decouple your objects: The event publisher does not need
to know anything about the event subscribers themselves. Instead of creating a direct
dependency between one class and another, the subject and observer communicate
while maintaining a degree of separation.

	— You don’t have to build it: C# includes an established event system, and you can use
System.Action delegate instead of defining your own delegates. Alternatively, Unity also
includes UnityEvents and UnityActions.

	— Each observer implements its own event handling logic: In this way, each observing
object maintains the logic it needs to respond. This makes it easier to debug and unit test.

	— It’s well-suited for user interface: Your core gameplay code can live separately from
your UI logic. Your UI elements then listen for specific game events or conditions and
respond appropriately. The MVP and MVC patterns use the observer pattern for this
purpose.

Be aware of these caveats for the observer pattern:

	— It adds additional complexity: Like other patterns, creating event-driven architecture
does require more setup up front. Also, be careful deleting subjects or observers. Make
sure you unregister observers in OnDestroy.

	— The observers need a reference to the class that defines the event: Observers still
have a dependency to the class that is publishing the event. Using a static EventManager
(below) that handles all events can help disentangle objects from each other.

	— Performance can be an issue: Event-driven architecture adds extra overhead. Large
scenes and many GameObjects can hinder performance.

Improvements
While only a basic version of the observer pattern is introduced here, you can expand this to
handle all of your game application’s needs.

Consider these suggestions when setting up the observer pattern:

	— Use the ObservableCollection class: C# provides a dynamic ObservableCollection to
track specific changes. It can notify your observers when items get added, removed, or
when the list is refreshed.

	— Pass a unique instance ID as an argument: Each GameObject in the hierarchy has a
unique instance ID. If you trigger an event that could apply to more than one observer,
pass the unique ID into the event (use type Action<int>). Then only run the logic in the
event handler if the GameObject matches the unique ID.

https://unity.com/releases/lts
https://docs.microsoft.com/en-us/dotnet/api/system.action?view=net-6.0
https://docs.unity3d.com/ScriptReference/Events.UnityEvent.html
https://docs.unity3d.com/ScriptReference/Events.UnityAction.html
https://docs.microsoft.com/en-us/dotnet/api/system.collections.objectmodel.observablecollection-1?view=net-5.0
https://docs.unity3d.com/ScriptReference/Object.GetInstanceID.html
https://docs.microsoft.com/en-us/dotnet/api/system.action-1?view=net-6.0

© 2024 Unity Technologies 101 of 147 | unity.com

| State pattern | Observer pattern | Model View Presenter (MVP) |

	— Create a static EventManager: Because events can drive much of your gameplay, many
Unity applications use a static or singleton EventManager. This way, your observers can
reference a central source of game events as the subject to make setup easier.

The FPS Microgame has a good implementation of a static EventManager which
implements custom GameEvents and includes static helper methods to add or+remove
listeners.

The Unity Open Project also showcases a game architecture that uses ScriptableObjects
to relay UnityEvents. It uses events to play audio or load new scenes.

	— Create an event queue: If you have a lot of objects in your scene, you might not want to
raise your events all at once. Imagine the cacophony of a thousand objects playing back
sounds when you invoke a single event.

Combining the observer pattern with the command pattern allows you to encapsulate
your events into an event queue. Then you can use a command buffer to play back
the events one at a time or selectively ignore them as necessary (e.g., if you have a
maximum number of objects that can make sounds at once).

The observer pattern heavily figures into the Model View Presenter (MVP) architectural
pattern, which is covered in more detail in the next chapter.

https://unity.com/releases/lts
https://learn.unity.com/project/fps-template
https://github.com/UnityTechnologies/open-project-1
https://youtu.be/WLDgtRNK2VE
https://youtu.be/WLDgtRNK2VE

© 2024 Unity Technologies 102 of 147 | unity.com

Model View Presenter
(MVP)

Model View Controller (MVC) is a family of design patterns commonly used when developing
user interfaces.

The general idea behind MVC is to separate the logical portion of your software from the data
and from the presentation. Games, like other applications, rely on user interface to connect
the player with the program’s underlying data. The UI and data components can often span
various parts of the application, leading to potential issues if directly coupled.

Tightly coupled components can introduce unnecessary dependencies, increasing the
complexity of the codebase and making it more susceptible to bugs. The MVC pattern
promotes modularity and looser coupling between parts of the application. This helps reduce
unnecessary dependencies and potentially cut down on spaghetti code.

Model View Controller (MVC) design pattern
As the name implies, the MVC pattern splits your application into three layers:

	— The Model stores data: The Model is strictly a data container that holds values. It does
not perform gameplay logic or run calculations.

	— The View is the interface: The View formats and renders a graphical presentation of
your data on screen.

	— The Controller handles logic: Think of this as the brain. It processes the game data and
calculates how the values change at runtime.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Spaghetti_code

© 2024 Unity Technologies 103 of 147 | unity.com

| Observer pattern | Model View Presenter (MVP) | Model-View-ViewModel |

 The Model, View, and Controller

This separation of concerns also specifically defines how these three parts interact with one
another. The Model manages the application data, while the View displays that data to the
user. The Controller handles input and performs any decisions or calculations on the game
data. Then it sends the results back to the Model.

Thus, the Controller does not contain any game data unto itself. Nor does the View. The MVC
design limits what each layer does. One part holds the data, another part processes the data,
and the last one displays that data to the user.

On the surface, you can think of this as an extension of the single-responsibility principle.
Each part does one thing and does it well, which is one advantage of MVC architecture.

Model View Presenter (MVP) and Unity
When developing a Unity project with MVC, the existing UI framework (either the UI Toolkit
or Unity UI) naturally functions as the View. Because the engine gives you a complete user
interface implementation, you won’t need to develop individual UI components from scratch.

However, following the traditional MVC pattern would require View-specific code to listen for
any changes in the Model’s data at runtime.

https://unity.com/releases/lts
https://docs.unity3d.com/Manual/UIElements.html
https://docs.unity3d.com/Manual/com.unity.ugui.html

© 2024 Unity Technologies 104 of 147 | unity.com

| Observer pattern | Model View Presenter (MVP) | Model-View-ViewModel |

While this is a valid approach, many Unity developers opt to use a variation on MVC where the
Controller acts as an intermediary. Here, the View doesn’t directly observe the Model. Instead,
it does something like this:

This variation on MVC is called the Model View
Presenter design, or MVP. MVP still preserves the
separation of concerns with three distinct application
layers. However, it slightly changes each part’s
responsibilities.

In MVP, the Presenter (called the Controller in MVC)
acts as a go-between for the other layers. It retrieves
data from the Model and then formats it for display
in the View. MVP switches which layer handles input.
Rather than the Controller, the View is responsible for
handling user input.

Note how the architecture leverages events and the
observer pattern. While the View captures user inputs
through UI elements like buttons, toggles, and sliders,
it relays these inputs to the presenter via events.
The Presenter then updates the model based on
these interactions. Once the data has been updated,
another event informs the Presenter. It then refreshes
the UI using the modified data.

Example: Health interface
To formalize an MVP example, imagine a simple system to show the health of a character or
item. You could stuff everything into one class that mixes the data and UI, but that wouldn’t
scale well. Adding more functionality would become more complicated as you need to expand it.

Instead, you can rewrite your health components in a more MVP-centric way. Divide your
scripts into a HealthModel and HealthPresenter.

 MVP: A variation on MVC

https://unity.com/releases/lts

© 2024 Unity Technologies 105 of 147 | unity.com

| Observer pattern | Model View Presenter (MVP) | Model-View-ViewModel |

In MVP, any object can hold the health data, but using a ScriptableObject works well here
since it decouples behavior from the data itself. The sample HealthModel ScriptableObject
looks something like this:

[CreateAssetMenu(fileName = “HealthData”, menuName = “DesignPatterns/
MVP/HealthModel”)]
public class HealthModel : ScriptableObject
{
 public event Action HealthChanged;

 public int CurrentHealth;
 public string LabelName;

 ...
 public void Increment(int amount) { ... }
 public void Decrement(int amount) { ... }
 public void Restore() { ... }

}

HealthModel only stores the actual health value, CurrentHealth, and invokes an event,
HealthChanged, every time that value changes. HealthModel does not contain gameplay
logic, only methods to increment and decrement the data. It also contains a string field for the
LabelName.

The sample uses UI Toolkit, so the View is defined in UXML. The interface includes the health
bar itself, a status label, and a value label. The visual representation is styled using a USS file.
Manage these assets in the UI Builder or directly as text.

 The UXML in the UI Builder

https://unity.com/releases/lts

© 2024 Unity Technologies 106 of 147 | unity.com

| Observer pattern | Model View Presenter (MVP) | Model-View-ViewModel |

The HealthPresenter acts as a mediator between the data layer of the Model and the user
interface of the View. It updates the UI in response to HealthModel changes and handles user
input to modify health data.

Serialized fields reference the UI Document (the View) and the m_HealthModelAsset
ScriptableObject (the Model).

public class HealthPresenter : MonoBehaviour
{

 [SerializeField] private UIDocument m_Document;
 [SerializeField] private HealthModel m_HealthModelAsset;
 private VisualElement m_Root;
 private ProgressBar m_HealthBar;
 private Label m_StatusLabel;
 private Label m_ValueLabel;

 private void OnEnable()
 {
 NullRefChecker.Validate(this);
 m_Root = m_Document.rootVisualElement;

 ...

 if (m_HealthModelAsset != null)
 {
 m_HealthModelAsset.HealthChanged += OnHealthChanged;
 UpdateUI();
 }
 }

 private void OnHealthChanged() => UpdateUI();

 private void OnDisable()
 {
 if (m_HealthModelAsset != null)
 m_HealthModelAsset.HealthChanged -= OnHealthChanged;
 }

 private void UpdateUI()
 {
 ...
 // Logic to update UI elements based on the health model data
 }

https://unity.com/releases/lts

© 2024 Unity Technologies 107 of 147 | unity.com

| Observer pattern | Model View Presenter (MVP) | Model-View-ViewModel |

 private void RegisterElements()
 {
 var resetButton = m_Root.Q<Button>(“reset-button”);
 if (resetButton != null)
 resetButton.clicked += RestoreHealth;
 }

 public void RestoreHealth() => m_HealthModelAsset.Restore();
 public void ApplyDamage(int damage) => m_HealthModelAsset
 .Decrement(damage);

}

Other GameObjects will need to use the HealthPresenter to modify the health values using
ApplyDamage and RestoreHealth methods.

Importantly, the HealthPresenter includes an UpdateUI method responsible for keeping
the View in sync with the Model data. This method is called in the OnHealthChanged event
handler, which is raised every time the health data changes in the HealthModel.

private void UpdateUI()
{
 float healthPercentage = (float)m_HealthModelAsset.CurrentHealth /
 m_HealthModelAsset.MaxHealth;

 // Update the progress bar to reflect the current health
 m_HealthBar.value = healthPercentage * 100;

 // Change the color of the health bar based on health percentage
 m_HealthBar.Q<VisualElement>(“progress”).style.backgroundColor =
 new StyleColor(Color.Lerp(Color.red, Color.green,
 healthPercentage));

 // Update the status label based on the health percentage
 m_StatusLabel.text = healthPercentage switch {
 < 0.33f => “Danger”,
 < 0.66f => “Neutral”,
 _ => “Good”
 };

 // Update the numerical value label
 m_ValueLabel.text = m_HealthModelAsset.CurrentHealth.ToString();
}

https://unity.com/releases/lts

© 2024 Unity Technologies 108 of 147 | unity.com

| Observer pattern | Model View Presenter (MVP) | Model-View-ViewModel |

UpdateUI calculates the ProgressBar value, changes its fill bar’s background color, and
updates both Labels. The logic converts the integer value into a string message or color as
necessary for each element.

It’s important to note that the HealthPresenter needs to subscribe to events from the
HealthModel to trigger the UpdateUI method when the CurrentHealth value changes.

Any data outside of the UpdateUI method, such as the LabelName, is only initialized once at
the start and does not update automatically when the CurrentHealth changes.

 Sample health interface using MVP

In the sample project, click the target to damage the health bar or reset the health with the
button. These UI elements inform the HealthPresenter (which invokes ApplyDamage or
ResetHealth) rather than change the Health directly.

 MVP in Unity UI
If you are using Unity UI, you can also find an older version of the sample scene that
supports UGUI. Explore the MVP scene within the 7_MVP directory. Just remember to
disable the SceneBootstrapper before accessing the Unity scene.

https://unity.com/releases/lts

© 2024 Unity Technologies 109 of 147 | unity.com

| Observer pattern | Model View Presenter (MVP) | Model-View-ViewModel |

Pros and cons
MVP (and MVC) really shine for larger applications. If your game requires a sizable team to
develop and you expect to maintain it for a long time after launch, you might benefit from the
following:

	— Smooth division of work: Because you’ve separated the View from the Presenter,
developing and updating your user interface can happen nearly independently from the
rest of the codebase.

This lets you divide your labor between specialized developers. Do you have expert
front-end developers on your team? Let them take care of the View. They can work
independently from everyone else.

	— Simplified unit testing with MVP and MVC: These design patterns separate gameplay
logic from the user interface. As such, you can simulate objects to work with your code
without actually needing to enter Play mode in the Editor. This can save considerable
amounts of time.

	— Readable code that can be maintained: You’ll tend to make smaller classes with this
design pattern, which makes them easier to read. Fewer dependencies usually means
fewer places for your software to break and fewer places that might be hiding bugs.

Though MVC and MVP are widespread in web development or enterprise software, often,
the benefits won’t be apparent until your application reaches a sufficient size and complexity.
You’ll need to consider the following before implementing either pattern in your Unity project:

	— You need to plan ahead: Unlike the other patterns described in this guide, MVC and MVP
are larger architectural patterns. To use one of them, you’ll need to split your classes by
responsibility, which takes some organization and requires more work up front.

	— Not everything in your Unity project will fit the pattern: In a “pure” MVC or MVP
implementation, anything that renders to screen really is part of the View. Not
every Unity component is easily split between data, logic, and interface (e.g., a
MeshRenderer). Also, simple scripts may not yield many benefits from MVC/MVP.

You’ll need to exercise judgment where you can stand to benefit the most from the
pattern. Usually, you can let the unit tests guide you. If MVC/MVP can facilitate testing,
consider them for that aspect of the application. Otherwise, don’t try to force the pattern
onto your project.

https://unity.com/releases/lts

© 2024 Unity Technologies 110 of 147 | unity.com

Model-View-
ViewModel

While MVP applies separation of concerns to our
project, much of what the presenter does is simply
shuttle data between the model and the view.
This amounts to a lot of boilerplate code for data
processing.

Consider the previous scenario where you have a
player statistic, such as health. We can represent
this value in a number of ways in the UI. For
instance, the health value could display colors
(green for full health, red for near death) or a
warning message when health is low.

In MVP, the presenter would need to query the
interface and then set up some logic to update
each UI element as needed. In most cases, the
presentation layer is simply serving up the existing
data, formatting and preprocessing it for the view.
Automating this can simplify our workflow.

 The MVVM pattern.

https://unity.com/releases/lts

© 2024 Unity Technologies 111 of 147 | unity.com

| Model View Presenter (MVP) | Model-View-ViewModel | Strategy pattern |

MVVM in Unity 6
Thus, Unity 6 includes a runtime data binding system, which upgrades the MVP pattern to the
Model-View-ViewModel (MVVM) pattern. Similar to MVP, MVVM also consists of three main parts:

	— Model: The Model represents the data and business logic of the application. This can be
any object, often taking the form of a ScriptableObject or MonoBehaviour.

	— View: The View is the user interface that displays the data and interacts with the user. In
UI Toolkit, this usually consists of a UXML file along with a USS style sheet.

	— View model: Much like the presenter from MVP, the View Model acts as a mediator
between the Model and the View. This is commonly implemented as a MonoBehaviour.

Seems familiar? It should be. MVVM is from the same family of MVC design patterns. The key
difference is that MVVM adds data binding (see below). Data binding makes updating the
view more automatic when the model’s properties change. This simplifies and reduces much
of the repetitive code to sync the underlying data with the user interface.

 Data binding
Data binding ensures synchronization between the properties of non-UI objects (like a
string property on a MonoBehaviour) and UI elements (such as the value property of a
TextField). A binding is essentially a link between a non-UI property and the UI element
that modifies it.

Setting up bindings automatically synchronizes changes between the underlying data
and the corresponding visual element. This eliminates the need to write event handlers
manually for each UI update.

UI Toolkit in Unity 6 now supports runtime data binding. This feature allows for binding
properties of C# objects to UI control properties during runtime UI operations. You can
also use it in the Editor UI as long as it’s not for serialized data.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-data-binding.html
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-runtime-binding.html

© 2024 Unity Technologies 112 of 147 | unity.com

| Model View Presenter (MVP) | Model-View-ViewModel | Strategy pattern |

Example: Updated sample project
The demo scene takes the same health bar example from the MVP sample scene and rebuilds
it using the MVVM with UI Toolkit’s runtime data binding.

Just like in the MVP example, the scene includes interactive elements to update a target’s
health bar. Clicking the collider damages the target, while clicking the button in the lower right
resets its health.

 The MVVM sample scene.

Adapting the same health bar example from the MVP sample scene illustrates the differences
between the design patterns:

The HealthModel again is a ScriptableObject that contains a field for the CurrentHealth
and some basic methods to increment, decrement, and reset its value. It also adds some extra
data converters used for data binding but is otherwise identical.

The HealthView remains nearly unchanged, with the same UXML and HealthBar style sheet.

The HealthViewModel again acts as a mediator between the model and the view. However,
much of the logic used to update the UI has been offloaded to UI Toolkit’s runtime data
binding. The scripted component again sets up the button interactivity and demonstrates how
to replicate the data binding in C#.

https://unity.com/releases/lts

© 2024 Unity Technologies 113 of 147 | unity.com

| Model View Presenter (MVP) | Model-View-ViewModel | Strategy pattern |

Note how the data binding between the UI and the HealthModel ScriptableObject updates:

	— The Label Name binds to the UI Label on the left. Modifying the field automatically
updates on-screen.

	— The value of the Current Health field appears on the Label to the right. As the value
changes, the text updates automatically.

	— A status Label’s text property indicates “Good,” “Neutral,” or “Danger” based on the
CurrentHealth value. The color of this label interpolates between green and red
accordingly.

	— The color of the progress bar updates to match. This demonstrates how to set up data
binding through the HealthViewModel script.

By leveraging data binding, the MVVM pattern simplifies synchronizing the model with the
view.

 The UI binds to the HealthModel ScriptableObject’s values.

Data binding: UI Builder

Let’s take a look at setting up a basic example of data binding using UI Builder. If the UI needs
to convert data directly from a ScriptableObject, this binding often can be done without the
need for a separate script.

https://unity.com/releases/lts

© 2024 Unity Technologies 114 of 147 | unity.com

| Model View Presenter (MVP) | Model-View-ViewModel | Strategy pattern |

To prepare the HealthModel, we can add a static method with the
InitializeOnLoadMethod attribute. The RegisterConverters adds a ConverterGroup
(named “Int to HealthBar” in this example) that can transform integer values representing
health into a color (from green to red) or string representations (“Danger,” “Neutral,” or
“Good”). These can provide visual or textual feedback.

Here is how you can implement this:

[InitializeOnLoadMethod]
public static void RegisterConverters()
{

 var converter = new ConverterGroup(“Int to HealthBar”);

 converter.AddConverter((ref int value) =>
 new StyleColor(Color.Lerp(Color.red, Color.green, value /
 (float)k_MaxHealth)));

 converter.AddConverter((ref int value) =>
 {
 float healthRatio = (float)value / (float)k_MaxHealth;
 return healthRatio switch
 {
 >= 0 and < 1.0f / 3.0f => “Danger”,
 >= 1.0f / 3.0f and < 2.0f / 3.0f => “Neutral”,
 _ => “Good”
 };
 });

 ConverterGroups.RegisterConverterGroup(converter);
}

Then, you can open the UXML in UI Builder and apply data binding interactively:

	— Locate the UI elements that you want to bind to the property. In the sample project, we
bind the CurrentHealth to the status label and value label.

	— Right-click to choose Add binding… from the context menu (or Edit binding… if a
binding already exists).

https://unity.com/releases/lts

© 2024 Unity Technologies 115 of 147 | unity.com

| Model View Presenter (MVP) | Model-View-ViewModel | Strategy pattern |

 Add a data binding to a property in the Inspector

	— Then, in the Add Binding window, select a Data Source, Data Source Path, and Binding
Mode.

For example, in the status label, the Data Source is the HealthData asset. The Data
Source Path is the CurrentHealth property. The BindingMode uses the To Target setting,
meaning that the data binds only one-way from the source to the UI (i.e. the UI changes
to reflect the data, not vice versa)

 The Edit Binding window.

	— Open the Advanced Settings if you want to choose a specific converter from the
ScriptableObject.

Here, the local converter uses the “Int to HealthBar” ConverterGroup, created in the
HealthModel ScriptableObject.

https://unity.com/releases/lts

© 2024 Unity Technologies 116 of 147 | unity.com

| Model View Presenter (MVP) | Model-View-ViewModel | Strategy pattern |

A data binding icon appears in the UI Builder’s Inspector once the setup is complete.

 The data binding appears in the Inspector.

Once the data binding is in place, the user interface just works without additional code.
Compare this simplified workflow with the HealthPresenter from the MVP sample scene.

Click the target to damage the CurrentHealth.The progress bar and labels update
immediately to reflect the new value.

Open the UXML in a text editor to reveal what’s happening behind the scenes. Each element
that is set up with a data binding has a Binding block, containing all of the information set in UI
Builder.

 Data bindings appear as code blocks in the UXML.

For example, the Label named health-bar__status-label above the health bar converts
the CurrentHealth to the appropriate string and color; these values then bind to the “text”
and “style.color” properties.

https://unity.com/releases/lts

© 2024 Unity Technologies 117 of 147 | unity.com

| Model View Presenter (MVP) | Model-View-ViewModel | Strategy pattern |

Data binding: Scripting

In some cases, you may need to set up data binding using C# instead of the UI Builder. This
is useful when certain UI elements contain internal parts or sub-elements. For example, the
ProgressBar’s background and fill bar are not directly selectable in the UI Builder’s Inspector.

This snippet demonstrates how to set up data binding in the HealthViewModel script:

private void SetDataBindings()
{
 var healthBar = m_Root.Q<ProgressBar>(“health-bar”);
 var healthBarProgress = healthBar?.Q<VisualElement>(className:
 “unity-progress-bar__progress”);
 if (healthBarProgress != null)
 {
 healthBarProgress.dataSource = m_HealthModelAsset;

 var binding = new DataBinding
 {
 dataSourcePath = new PropertyPath(nameof(HealthModel
 .CurrentHealth)),
 bindingMode = BindingMode.ToTarget,
 };
 binding.sourceToUiConverters.AddConverter((ref int value) =>
 new StyleColor(Color.Lerp(Color.red, Color.green,
 (float)value / m_HealthModelAsset.MaxHealth)));

 healthBarProgress.SetBinding(“style.backgroundColor”,
 binding);
 }
}

The SetDataBindings method queries the VisualElement hierarchy to find the ProgressBar
named “health-bar.” Then, it sets up the data binding much like in the UI Builder.

	— Set the data source. In this case, the data source is the HealthData ScriptableObject
asset in the project.

	— Create a data binding object, which contains the dataSourcePath and the binding mode.

	— Define data converters if necessary. The above example shows how the integer value
can convert into a StyleColor on the ProgressBar’s fill bar.

Then, call SetBinding on the UI element, passing in the property (e.g. “style.
backgroundColor” for the ProgressBar’s fill color) and the binding object. Repeat this process
for each element property that needs data binding.

https://unity.com/releases/lts

© 2024 Unity Technologies 118 of 147 | unity.com

| Model View Presenter (MVP) | Model-View-ViewModel | Strategy pattern |

This becomes particularly important when direct binding to a ScriptableObject asset isn’t
possible, like when you need to create a ScriptableObject instance at runtime. In cases where
a GameObject with a HealthViewModel must reference its individual health object, set up the
data binding via scripting instead of the UI Builder.

Compare using data binding with the previous MVP example without it. Each uses the same
UXML and USS.

No data binding (MVP) Data binding (MVVM)

The HealthPresenter listens for events
on the HealthModel in order to update.

The HealthPresenter converts
values for display in the UI Elements
(UpdateUI).

The HealthModel stores data and basic
business logic (Increment, Decrement).

The HealthModel registers a
ConverterGroup to transform model
data into a format used by the UI.

The HealthViewModel creates
bindings from the HealthModel to the UI
(SetDataBindings).

The HealthModel stores data and basic
business logic (Increment, Decrement).

https://unity.com/releases/lts

© 2024 Unity Technologies

| Introduction | Importing animations into Unity | Generic animation type

119 of 147 | unity.com

https://unity.com/releases/lts

© 2024 Unity Technologies 120 of 147 | unity.com

| Model View Presenter (MVP) | Model-View-ViewModel | Strategy pattern |

In MVP, the Presenter subscribes to events from the Model to detect state changes. When
notified of a change, the Presenter processes the data into a format suitable for the View and
updates the View accordingly.

In MVVM, start by registering any necessary Converters in the Model. Then, establish data
bindings in the ViewModel. This setup allows changes in the Model to update the View
automatically through the existing bindings.

You can find a more detailed introduction to runtime data binding in the documentation.

Pros and cons
MVVM shares many of the benefits of MVP, such as improved testability and separation
of concerns. Data binding can reduce the amount of boilerplate code needed to keep the
UI in sync with the underlying data, reducing the number of events raised from the model.
This leads to more concise code that is easier to read and maintain. It also improves UI
consistency, with data binding reducing the risk of displaying stale or incorrect data.

However, consider the additional overhead of setting up each data binding. Setting the data
source, data source path, binding mode, converters, etc. requires slightly more effort up front.
This pattern may only be suitable for larger user interfaces where the benefits outweigh the
additional complexity cost.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-get-started-runtime-binding.html

© 2024 Unity Technologies 121 of 147 | unity.com

Strategy pattern

Gameplay seldom sits still. At runtime, your game objects often need to adapt to changing
conditions and update themselves accordingly.

For example, imagine a stealth game where a player’s movement style needs to switch
between sneaking past guards to running away after being detected. Or consider a combat
system where characters can exhibit different attack modes, such as melee, ranged, or magic.

Implementing these dynamic behaviors in a clean and maintainable way can be challenging as
your game grows. Much as with the state pattern, using a switch statement can lead to large
bloated classes.

The strategy pattern offers a solution to this problem by wrapping algorithms or behaviors
within an object and making them interchangeable. Each strategy object encapsulates a
distinct behavior that can be executed dynamically. Thus, a client object can switch its
behavior at runtime by referencing different strategy objects, without needing to modify its
own class structure.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Strategy_pattern

© 2024 Unity Technologies 122 of 147 | unity.com

| Model-View-ViewModel | Strategy pattern | Flyweight pattern |

 The Strategy pattern makes behaviors interchangeable at runtime.

Example: An ability system
Imagine you’re developing a game that allows players to acquire new abilities as they
progress. For instance, these abilities could serve as rewards or “perks” for outstanding
performance in a competitive FPS or action RPG. When a player becomes eligible for a new
ability, a corresponding UI button might be displayed on the screen to indicate its availability.

Before refactoring

Initially, you might create a single script tasked with handling all special abilities. This
approach works but as you need to add new abilities or modify existing ones, it becomes
difficult to maintain.

https://unity.com/releases/lts

© 2024 Unity Technologies 123 of 147 | unity.com

| Model-View-ViewModel | Strategy pattern | Flyweight pattern |

The initial setup for defining these abilities might look something like this:

public class AbilityRunner : MonoBehaviour
{
 public enum Ability
 {
 RadarPulse,
 AirSupport,
 FirstAid
 }

 public Ability currentAbility;

 void Update()
 {
 if (Input.GetKeyDown(KeyCode.Space))
 {
 ActivateAbility(currentAbility);
 }
 }

 void ActivateAbility(Ability ability)
 {
 switch (ability)
 {
 case Ability.RadarPulse:
 // Radar Pulse logic
 Debug.Log(“Activating Radar Pulse”);
 break;

 case Ability.AirSupport:

 // Air Support logic
 Debug.Log(“Calling in Air Support”);
 break;

 case Ability.FirstAid:

 // First Aid/Healing logic
 Debug.Log(“Using First Aid”);
 break;
 }
 }
}

https://unity.com/releases/lts

© 2024 Unity Technologies 124 of 147 | unity.com

| Model-View-ViewModel | Strategy pattern | Flyweight pattern |

This script becomes increasingly complex and challenging to manage as the game evolves.
Each new ability requires modifications to the existing code, violating the open-closed
principle. Remember that our goal is to keep our software open for extension but closed for
modification.

Implementing the strategy pattern

Let’s revisit the ability system using the strategy pattern. Begin by creating an abstract
Ability class or interface. This will define a method called Use that all specific abilities must
implement. This example extends ScriptableObject (but any object can work here).

public abstract class Ability : ScriptableObject
{
 public string abilityName;
 public abstract void Use(GameObject gameObject);
}

Then, create concrete implementations of the Ability class for each specific ability. These
classes will implement the actual logic within the Use method to perform their unique actions.

[CreateAssetMenu(fileName = “RadarPulseAbility”, menuName = “Abili-
ties/RadarPulse”)]
public class RadarPulse : Ability
{
 public override void Use(GameObject gameObject)
 {
 Debug.Log(“Activating Radar Pulse”);
 // Implement Radar Pulse logic here
 }
}

[CreateAssetMenu(fileName = “AirSupportAbility”, menuName = “Abili-
ties/AirSupport”)]
public class AirSupport : Ability
{
 public override void Use(GameObject gameObject)
 {
 Debug.Log(“Calling in Air Support”);
 // Implement Air Support logic here
 }
}

[CreateAssetMenu(fileName = “FirstAidAbility”, menuName = “Abilities/

https://unity.com/releases/lts

© 2024 Unity Technologies 125 of 147 | unity.com

| Model-View-ViewModel | Strategy pattern | Flyweight pattern |

FirstAid”)]
public class FirstAid : Ability
{
 public override void Use(GameObject gameObject)
 {
 Debug.Log(“Using First Aid”);
 // Implement First Aid/Healing logic here
 }
}

These ScriptableObjects can be serialized and stored as project assets. This allows them to
be easily assigned and modified within the Unity Inspector.

A client object can then reference these strategy objects. Here, we refactor the
AbilityRunner class so that at runtime, it can set its specific currentAbility dynamically.
In this example, pressing the Space key calls the Use method, which executes the ability logic.

public class AbilityRunner : MonoBehaviour
{
 // Assign this via the Unity Editor
 public Ability currentAbility;

 void Update()
 {
 if (Input.GetKeyDown(KeyCode.Space))
 {
 currentAbility.Use(gameObject);
 }
 }

}

Each ability, now encapsulated as its own object, can be edited, added, or removed without
impacting the core game code. This enhances the game’s flexibility, allowing for dynamic
ability changes at runtime. Creating new abilities also becomes more manageable and scalable
as a result.

https://unity.com/releases/lts

© 2024 Unity Technologies 126 of 147 | unity.com

| Model-View-ViewModel | Strategy pattern | Flyweight pattern |

Example: Sample project
The project shows a basic implementation of the strategy pattern. The player can gather
power-ups to attain a desired “streak.” The button updates according to the streak count,
displaying different abilities as the player streak increments. Clicking the button then
activates the current special ability as a strategy.

What the button actually does is wrapped into a ScriptableObject. That means that it can be
interchanged at runtime, either in the Inspector or with separate game logic.

In this specific sample, a streak counter ties the associated perk or special ability to the UI,
which dynamically adjusts to player performance.

Because each interchangeable strategy is encapsulated in its own class, adding more abilities
does not impact the others; simply create more ScriptableObject abilities as your game
requires.

Here, the button triggers some decorative elements (such as a particle effect or sound), but
it’s not limited to any one thing.

Each encapsulated strategy can perform a vast range of actions tailored to your game’s
specific needs. Alter gameplay mechanics, enhance character abilities, or even modify the
game environment.

 The project implements special abilities, or perks, using the strategy pattern.

https://unity.com/releases/lts

© 2024 Unity Technologies 127 of 147 | unity.com

| Model-View-ViewModel | Strategy pattern | Flyweight pattern |

Pros and cons
The strategy pattern works well for situations where you need to change how your game
behaves at runtime. Because you can add new features without altering existing code, this
pattern makes your system more flexible in keeping with SOLID principles. Each behavior is
neatly compartmentalized into its own class, and that makes testing easier as well.

On the downside, having more classes to manage can increase complexity. Because a
strategy object carries a small amount of overhead with it, consider alternative patterns or
optimizations when performance is critical.

Being encapsulated also means that you’ll need to carefully design how these strategies will
share information and communicate with the rest of your gameplay systems (e.g. events).
You’ll need to avoid tightly coupling the strategies with other components; otherwise, you’re
negating the benefits of the pattern.

More examples
The strategy pattern is not just a tool for managing abilities. You can apply it to many different
aspects of gameplay. Here are a few practical examples:

Character movement strategies: Imagine you’re creating a platformer game where the player
character’s movement abilities can be upgraded, depending on the environment or power-ups.
At the start, the player might only be able to walk and jump, but later they gain the abilities to
double-jump, dash, or even fly.

AI behavior: Switch between different AI behaviors based on the game state or player
actions. Adjust enemy states between offensive, defensive, or patrol strategies, depending on
the player.

Navigation strategies: If you created a pathfinding system, you could use the strategy pattern
to define multiple algorithms (A*, Dijkstra’s shortest path, etc.) that you could swap during
gameplay, depending on context.

Attack strategies: Allow players or AI to switch between weapon types dynamically, with
strategies such as MeleeAttack, RangedAttack, or AreaEffectAttack. Or imagine a boss enemy
that can switch modes or unique combat abilities, depending on its remaining health.

Difficulty Adjustment: Automatically adjust game difficulty based on player performance.
Implement an “adaptive difficulty” strategy that changes in real-time. Or allow the player to
select a “fixed difficulty” strategy for a consistent challenge.

https://unity.com/releases/lts

© 2024 Unity Technologies 128 of 147 | unity.com

Flyweight pattern

Large game worlds will often contain scenes populated with numerous GameObjects and
components. If similar objects carry the same data fields, this can result in significant
duplication of data, leading to increased memory usage. Consider a forest scene where each
tree object stores its own configuration data.

A tree in our game scene might store:

	— Complex data structures for defining the tree. If you were generating the tree
procedurally, this could include arrays or lists of floats, colors, and Vector3 values.

	— Animation curves for defining how the tree sways in the wind.

	— Custom class instances that define other physical characteristics or gameplay metadata.

Though each individual field may be relatively small, remember that duplicating the
GameObject also copies its various components and their stored data fields. If a field is a
value type (e.g., a struct, primitive type, or array), each duplicated GameObject will have
its own copy of the data. Populate your game world forest with trees, and this redundancy
quickly adds up.

The flyweight is an optimization pattern that can reduce the amount of duplicate data in your
game by centralizing shared data. Thus, it allows individual objects to reference this shared
data instead of storing their own copies.

https://unity.com/releases/lts

© 2024 Unity Technologies 129 of 147 | unity.com

| Strategy pattern | Flyweight pattern | Dirty flag |

 Use the Flyweight pattern to share data across similar objects.

If you’re accustomed to the prefab workflow in Unity, then you’re already familiar with the
idea. We can share as much data as possible between similar objects, reducing the overall
memory footprint.

Unrefactored example
Consider a strategy game teeming with gameplay units. Each may carry attributes such as
health, attack, defense, and movement. To identify each unit, you also might want to tag them
with a team label and icon.

Thus, an unoptimized gameplay unit might have a class like this:

public class UnrefactoredUnitInstance : MonoBehaviour
{
 public string factionName;
 public Sprite factionIcon;
 public int baseHealth;
 public int baseAttack;
 public int baseDefense;
 public int baseMovement;

 // Unique state for this unit instance
 public int health;
 public int attack;
 public int defense;
 public int movement;
 public Vector3 position;

https://unity.com/releases/lts

© 2024 Unity Technologies 130 of 147 | unity.com

| Strategy pattern | Flyweight pattern | Dirty flag |

 private void Start()
 {
 RefreshUnitStats();
 }

 private void RefreshUnitStats()
 {
 health = baseHealth;
 attack = baseAttack;
 defense = baseDefense;
 movement = baseMovement;
 // ... update other unit components based on faction data
 }

 public void SetFactionData(string factionName, Sprite factionIcon,
 int baseHealth, int baseAttack, int baseDefense, int baseMovement)
 {
 this.factionName = factionName;
 this.factionIcon = factionIcon;
 this.baseHealth = baseHealth;
 this.baseAttack = baseAttack;
 this.baseDefense = baseDefense;
 this.baseMovement = baseMovement;

 RefreshUnitStats();
 }

}

In addition to its own stats, a unit carries an additional payload of data that should ideally
remain constant across a given faction or team. When creating a new unit instance with the
SetFactionData method, you pass all the common faction data – and store a copy of it. The
more units you add, the more redundant data you’re duplicating and storing.

This doesn’t just use up more memory – it also makes it harder to keep everything updated
and consistent across your game. Manually syncing data across many objects is error prone
and can lead to inconsistencies.

With a handful of objects, it’s not a problem. But with a large number of units from the same
faction, the increased memory usage may start to be noticeable – or at least difficult to
manage.

https://unity.com/releases/lts

© 2024 Unity Technologies 131 of 147 | unity.com

| Strategy pattern | Flyweight pattern | Dirty flag |

Implementing the flyweight pattern
A simple solution is to store the shared data in a central repository, or flyweight object.

A ScriptableObject works well for this purpose since it’s ideal for storing data that doesn’t
need to change at runtime (e.g. settings, configuration data, etc.).

Refactoring the shared data into a separate class can reduce redundancy, like so:

// Flyweight object (ScriptableObject)
[CreateAssetMenu]
public class FactionData : ScriptableObject
{
 public string factionName;
 public Sprite factionIcon;
 public int baseHealth;
 public int baseAttack;
 public int baseDefense;
 public int baseMovement;
}

// Context object
public class UnitInstance : MonoBehaviour
{
 public FactionData factionData;

 private void Start()
 {
 RefreshUnitStats();
 }

 private void RefreshUnitStats()
 {
 health = factionData.baseHealth;
 attack = factionData.baseAttack;
 defense = factionData.baseDefense;
 movement = factionData.baseMovement;

 // ...Update other unit components based on faction data
 }

 // Unique state for this unit instance
 public int health;
 public int attack;
 public int defense;
 public int movement;

 public Vector3 position;

 // ... Add other unique states here
}

https://unity.com/releases/lts

© 2024 Unity Technologies 132 of 147 | unity.com

| Strategy pattern | Flyweight pattern | Dirty flag |

Using the pattern, the FactionData class is a ScriptableObject that represents the
shared faction data. It contains fields for the faction name, icon, and base unit stats.

The UnitInstance class is the Context object that holds a reference to the FactionData
ScriptableObject. It refreshes its stats based on the shared faction data. By separating shared
and unique data, you reduce memory usage and potential inconsistencies across your game
objects.

Example: Sample project
The provided example demonstrates the flyweight pattern by optimizing memory usage for a
fleet of spaceships.

 Share data across similar objects using the flyweight pattern.

The core principle is distinguishing between intrinsic (shared) and extrinsic (unique) state
data. Intrinsic data is immutable and shared across instances, reducing memory usage.
Extrinsic data varies between instances and is stored individually.

In the example, ShipData is a ScriptableObject that contains intrinsic, shared data for all ships,
such as unit name, speed, attack power, and defense. All ships reference the same data set
for these properties, minimizing the memory footprint.

https://unity.com/releases/lts

© 2024 Unity Technologies 133 of 147 | unity.com

| Strategy pattern | Flyweight pattern | Dirty flag |

[CreateAssetMenu(fileName = “ShipData”, menuName = “Flyweight/ShipDa-
ta”, order = 1)]
public class ShipData : ScriptableObject
{
 public string UnitName;
 public string Description;
 public float Speed;
 public int AttackPower;
 public int Defense;
}

Create the ScriptableObject instance from the context menu defined in the CreateAssetMenu
attribute.

A Ship class can represent individual ships in the fleet. Each ship instance holds a reference
to the shared ShipData and, in turn, manages its own unique state, such as health.

public class Ship : MonoBehaviour
{
 [SerializeField] private ShipData m_SharedData;

 [SerializeField] private float m_Health;

 public void Initialize(ShipData data, float health)
 {

 m_SharedData = data;
 m_Health = health;
 }

 public void DisplayShipInfo()
 {
 Debug.Log($”Name: {sharedData.UnitName}, Health: {m_Health}”);
 }

}

The ShipFactory is responsible for generating the fleet of ships. It initializes each ship using
a prefab GameObject and the shared ShipData.

https://unity.com/releases/lts

© 2024 Unity Technologies 134 of 147 | unity.com

| Strategy pattern | Flyweight pattern | Dirty flag |

public class ShipFactory : MonoBehaviour
{
 [SerializeField] private Ship shipPrefab;
 [SerializeField] private ShipData sharedShipData;
 [SerializeField] private float spacing = 1.0f;

 void Start()
 {
 GenerateShips(10, 10);
 }

 public void GenerateShips(int rows, int columns)
 {
 for (int i = 0; i < rows; i++)
 {
 for (int j = 0; j < columns; j++)
 {
 Vector3 position = new Vector3(i * spacing, 0, j *
 spacing);
 Ship newShip = Instantiate(shipPrefab, position,
 Quaternion.identity, transform);
 newShip.Initialize(sharedShipData, 100);
 // Assuming 100 is the starting healt
 newShip.name = $”Ship_{i * columns + j}”;
 }
 }
 }
}

By centralizing shared data in a ScriptableObject, you can reduce the memory footprint across
numerous ship instances. Meanwhile, unique data such as health is still managed individually
by each ship instance.

Though this isn’t much savings per GameObject, the efficiencies become more noticeable the
more ships you add to the scene. Large numbers of similar objects make the best use of this
pattern.

Add the Memory Profiler package from the Package Manager to get better insight into the
memory savings. In the Memory Profiler window (Window > Analysis > Memory Profiler)
search through the managed objects to determine the allocated size. Compare before
implementing the pattern versus applying the flyweight object.

https://unity.com/releases/lts
https://unity.com/how-to/use-memory-profiling-unity

© 2024 Unity Technologies 135 of 147 | unity.com

| Strategy pattern | Flyweight pattern | Dirty flag |

 Compare the memory savings in the Memory Profiler.

While the sample scene only showcases a few shared fields, the flyweight pattern’s benefits
can become substantial in large-scale projects like RPGs or strategy games with numerous
onscreen units.

Use the flyweight pattern to save resources whenever you have a large number of objects
that share common properties in their base classes.

 Prefabs versus flyweights
The prefab system can be considered an implementation of the flyweight pattern, but
with differences in approach and scope.

	— Prefabs share entire GameObject structures, including all components and
hierarchies, while the flyweight pattern allows selectively sharing specific data
fields or properties.

	— The flyweight pattern provides more flexibility in separating and managing shared
data because it’s not tied to a specific GameObject structure.

While prefabs are well-suited for reusing complex GameObjects, flyweights provide
additional optimization when numerous objects share just a subset of properties. The two
approaches can complement each other, with prefabs handling overall structure reuse

and flyweights optimizing shared data fields within those structures.

https://unity.com/releases/lts

© 2024 Unity Technologies 136 of 147 | unity.com

| Strategy pattern | Flyweight pattern | Dirty flag |

Pros and cons
The flyweight pattern excels in scenarios where numerous objects share a common state.
This is particularly useful on resource-constrained platforms, such as mobile devices,
where reducing memory consumption can improve performance. Applications that require
instantiating a large number of objects can use the flyweights to their advantage to scale
more effectively.

Just be aware that the pattern incurs additional overhead and complexity. In addition to
managing the individual objects in your scene, you’ll also need to manage their shared state.
The benefit from the flyweight pattern only becomes tangible when there are a sufficient
number of units to justify the additional overhead.

Also, because you’re forcing units to share the same basic data, that limits their flexibility.
You’ll need to override the shared data to make each unit unique, akin to the prefab workflow
but applied to specific data sets.

More examples
Though much of what the flyweight pattern provides can also be achieved using prefabs, it
can be a good choice for the following types of cases:

Crowd simulations: Building a sports sim with some background crowds? Use the pattern to
share models, animations, and textures to build large, dynamic crowds.

Character/weapon skins and customization: Many games often allow players to customize
their weapons or gear with skins and attachments. The base properties of these items can be
shared with flyweights, with only the customizations stored individually.

Level art: When designing a forest, take all of the universal properties of a tree and store them
in the base Tree class. Then, you don’t need to repeat them in the subclasses (e.g., PineTree,
MapleTree, and so on).

Note that in scenarios where your game features thousands of objects with shared data
(such as a swarm of projectiles in an intense shooter or armies of units in an action strategy
game), consider using Unity’s Data-Oriented Technology Stack (DOTS) instead. DOTS can
offer superior performance optimization through its focus on multithreading and reducing data
dependencies. Read the DOTS e-book for advanced Unity developers for an in-depth look at
each of the packages and technologies in the stack and their related concepts.

As with any design pattern, evaluate the specific needs of your project before implementing it.
Then, decide as a team which pattern will give the best benefit.

https://unity.com/releases/lts
https://github.com/Unity-Technologies/EntityComponentSystemSamples
https://unity.com/blog/engine-platform/new-ebook-understanding-unity-dots

© 2024 Unity Technologies 137 of 147 | unity.com

Dirty flag

Sometimes game development starts to get complicated – or at least computationally
expensive. The dirty flag pattern can help when you have a lot of calculations or updates
happening in your scenes.

A dirty flag is simply a boolean that indicates whether an object’s state has changed since the
last time it was processed or rendered. If an object is “dirty,” it gets updated; otherwise, it’s
skipped, saving computational resources.

A common use case is traversing a complex hierarchy or managing a large scene file. The dirty
flag can help minimize calculations until certain objects are marked “dirty.” For example, child
transforms could ignore updates until the parent or root transform requires one. This can help
minimize unnecessary calculations with dynamic objects that frequently change state.

Using the dirty flag pattern means strategically placing checks at points where object states
are likely to change. This could be within event handlers, physics updates, or animation
systems. The checks then ensure that only a subset of the game world is updated in response
to player actions or game events. Every resource saved helps reduce overhead.

https://unity.com/releases/lts
https://gameprogrammingpatterns.com/dirty-flag.html

© 2024 Unity Technologies 138 of 147 | unity.com

| Flyweight pattern | Dirty flag | Conclusion

 Use the dirty flag pattern to prevent unnecessary updates.

Example: Sample project
Consider a large, open-world game. It’s often resource-prohibitive to load the entire game
environment at once. Instead, a common tactic is to load just a portion of the game world that
the player currently sees.

To manage this, the game world can be divided into smaller Unity scenes, loading each one as
necessary. However, this scene loading process is relatively slow and can cause brief pauses
that disrupt gameplay.

Thus, we only want to update the game world when necessary. In this example, we introduce a
mechanism that only executes when certain conditions are met. We mark the world with a dirty
flag when it’s ready for an update. Otherwise, the update loop skips over the expensive logic.

As the player navigates through the level, this game world only updates when the player
moves near the boundary of the current sector. This saves compute resources to help ensure
a seamless gameplay experience.

Explore the sample implementation to see one way to apply this pattern:

	— The game world is divided into sectors or regions, each with associated content that
needs to load when the player is nearby.

	— A manager script tracks the player’s movement and determines which sectors are
relevant based on the player’s current location.

	— Each sector has a dirty flag that indicates whether its content needs to be loaded or
unloaded, based on the player’s proximity and interaction.

https://unity.com/releases/lts

© 2024 Unity Technologies 139 of 147 | unity.com

| Flyweight pattern | Dirty flag | Conclusion

Because scene loading is a relatively expensive operation, the dirty flag pattern makes sure
that the expensive game world update only runs when necessary. Here, the GameSectors
script manages what parts of the game world loads at runtime.

public class GameSectors: MonoBehaviour
{
 public Player player;
 public Sector[] sectors;

 private void Update()
 {
 foreach (Sector sector in sectors)
 {
 bool isPlayerClose = sector.IsPlayerClose(player
 .transform.position);

 // Check if the sector’s state needs to change
 If (isPlayerClose != sector.IsLoaded)
 {
 sector.MarkDirty();
 }

 // Update the sector based on its dirty flag
 if(sector.IsDirty)
 {
 If (isPlayerClose)
 {
 sector.LoadContent();
 }
 else
 {
 sector.UnloadContent();
 }

 // Reset the dirty flag
 sector.Clean();
 }
 }
 }

}

The sample scene illustrates how to visualize material changes and scene loading/unloading
in response to the player’s proximity. By using the dirty flag pattern, content loading and
unloading operations are only performed when the player moves close enough to or far
enough from a sector.

https://unity.com/releases/lts

© 2024 Unity Technologies 140 of 147 | unity.com

| Flyweight pattern | Dirty flag | Conclusion

This minimizes unnecessary processing and memory usage as the application shows a limited
section of the game world at a time.

Each Sector in this example maintains its own distance to the player as the threshold to load
or unload assets. Here’s a snippet of sample:

 public class Sector : MonoBehaviour
 {

 [Tooltip(“Minimum distance to load”)]
 public float m_LoadRadius;
 ...

 public bool IsLoaded { get; private set; } = false;
 public bool IsDirty { get; private set; } = false;

 void Awake()
 {
 ...
 Clean();
 IsLoaded = false;
 }

 public void MarkDirty()
 {
 IsDirty = true;
 Debug.Log($”Sector {gameObject.name} is marked dirty”);
 ...
 }

 public void LoadContent()
 {
 IsLoaded = true;
 ...
 // Logic to load scene content from the project
 }

 public void UnloadContent()
 {
 IsLoaded = false;
 ...
 // Logic to unload scene content
 }

 public bool IsPlayerClose(Vector3 playerPosition)
 {

https://unity.com/releases/lts

© 2024 Unity Technologies 141 of 147 | unity.com

| Flyweight pattern | Dirty flag | Conclusion

 return Vector3.Distance(playerPosition, transform.position
 + m_CenterOffset) <= m_LoadRadius;
 }

 public void Clean()
 {
 IsDirty = false;
 }
 ...

In this setup, a SceneLoader component selectively loads and unloads parts of the game as
the player moves through the level.

The camera in the scene provides a top-down view to illustrate how this system works. In a
real application, imagine a camera following the player, showing only a limited field of view. In
this scenario, the game could then selectively load and display only those areas immediately
within the player’s visibility.

https://unity.com/releases/lts

© 2024 Unity Technologies 142 of 147 | unity.com

| Flyweight pattern | Dirty flag | Conclusion

 Parts of the level update after they are marked “dirty.”

https://unity.com/releases/lts

© 2024 Unity Technologies 143 of 147 | unity.com

| Flyweight pattern | Dirty flag | Conclusion

Though we can further optimize this (and not use an Update at all), this example shows a
simple case of using a dirty flag to reduce the expensive calls to the SceneManagement API.

Pros and cons
The dirty flag pattern is particularly valuable in large simulations or systems generating
procedural content. Because costly operations only execute when needed, it minimizes
unnecessary calculations and can boost memory efficiency – vital for platforms with limited
memory like mobile devices.

On the negative side, be aware that the dirty flag can introduce tight coupling between
components. This adds a layer of dependency and risk. Also, since updates are postponed
until the dirty flag is set, the application’s state might temporarily lag, appearing outdated until
the necessary update occurs.

 Dirty flags versus dirty bits and caching
The terms “dirty bit” and “caching” are often mentioned alongside the dirty flag pattern. In
computing, each serves a distinct purpose.

The dirty flag pattern is a high-level software design strategy aimed at reducing
unnecessary updates in applications.

In contrast, a dirty bit is a low-level indicator used in systems programming to signal
modified memory pages, requiring updates before being replaced.

The broader technique of caching improves data retrieval speed by storing temporary
copies of data, often utilizing dirty flags or bits to ensure the cached data remains
current.

More examples
Use the dirty flag whenever you want to minimize the impact of an expensive calculation or
operation, such as in the following cases.

Complex hierarchical transforms. If you have child transforms of an animated character,
minimize animations until the parent transform updates (e.g. only update the lower limbs if the
upper limbs or body is moving). If you had a strategy game where the units are in formation,
have the units update their motions only after the entire group formation is marked dirty.

Physics simulations: For physics simulations involving complex interactions or large numbers
of objects, recalculate only when the state of the objects changes (like position, velocity, or
external forces) in order to optimize performance.

https://unity.com/releases/lts

© 2024 Unity Technologies 144 of 147 | unity.com

| Flyweight pattern | Dirty flag | Conclusion

Pathfinding: Recalculating paths for AI agents can be expensive. Using dirty flags to update
paths only when obstacles move or the target location changes.

Procedural Content Generation: Much like the scene-loading example, this pattern can
tell the system when to regenerate procedural terrain based on specific triggers like player
movement or game events.

UI Layouts: In a complex UI system, elements might need to rearrange themselves when
certain conditions change (like window resizing, content updates, etc.). The dirty flag pattern
can be used to update the layout only when necessary, avoiding constant recalculations. For
example, a VisualElement in UI Toolkit includes a MarkDirtyRepaint method. Likewise, the
EditorUtility has ClearDirty and SetDirty methods.

https://unity.com/releases/lts
https://docs.unity3d.com/ScriptReference/UIElements.VisualElement.MarkDirtyRepaint.html
https://docs.unity3d.com/ScriptReference/EditorUtility.ClearDirty.html
https://docs.unity3d.com/ScriptReference/EditorUtility.SetDirty.html

© 2024 Unity Technologies 145 of 147 | unity.com

Conclusion

If you’re new to software patterns, we hope this guide has helped you understand some of the
most common ones you can encounter in Unity development.

Whether it’s a factory for spawning Prefabs or a state pattern for AI, keep these techniques
handy as the need arises. Recognizing when and how to apply design patterns can help you
tackle your next Unity challenge. Of course, don’t get lost in forcing a specific pattern to fit;
not using a pattern is just as important as using one.

A design pattern can speed up your workflow and offer an elegant solution to a recurrent
problem when applied correctly. Then, you can concentrate on what’s important: making a fun
and unique experience for your players.

So, while you don’t need to reinvent the wheel, you can definitely put your own spin on it.

https://unity.com/releases/lts

© 2024 Unity Technologies 146 of 147 | unity.com

| Flyweight pattern | Dirty flag | Conclusion

 Other design patterns
This guide is just a small sampling of several well-known design patterns in computing
and game development. While we won’t go into their specifics, here’s a brief overview of
some others that may be useful to you:

	— Adapter: This provides an interface (also called a wrapper) between two unrelated
entities so they can work together.

	— Double buffer: This allows you to maintain two sets of array data while your
calculations finish. You can then display one set of data while you process the
other, which is useful for procedural simulations (e.g., cellular automata) or just
rendering things to screen.

	— Interpreter/Bytecode: If you want to add modding support or allow non-
programmers to extend your game, you can create a simplified language that users
can edit in an external text file. The bytecode component can then translate that
interpreted language into C# game code.

	— Subclass sandbox: If you have similar objects with varying behaviors, you can
define those behaviors as protected in a parent class. Then the child classes can
mix and match to create new combinations.

	— Type object: If you have many varieties of a GameObject, instead of making
subclasses for each one, define all possible behaviors in a single abstract or parent
class. Differentiate the special characteristics of individual objects in a separate
data file (such as a ScriptableObject) that can be customized without changing the
code. For example, this allows you to create an inventory of seemingly different
items that all derive from the same class. A game designer can customize the data
file to make each item unique (e.g., weapons for an RPG), all without the assistance
of a programmer.

	— Data locality: If you optimize data so that it’s stored efficiently in memory, you
can reap the rewards of performance. Replacing classes with structs can make
your data more cache-friendly. Unity’s ECS and DOTS architecture implement this
pattern.

	— Spatial partitioning: With large scenes and game worlds, use special structures
to organize your GameObjects by position. The Grid, Trie (Quadtree, Octree), and
Binary search tree are all techniques to help you divide and search more efficiently.

	— Decorator: This allows you to add responsibilities to an object without changing
its existing structure. A decorator could imbue special abilities or modify a
GameObject, e.g., adding perks to a weapon without needing to change the base
weapon class.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Adapter_pattern
https://gameprogrammingpatterns.com/double-buffer.html
https://gameprogrammingpatterns.com/bytecode.html
https://gameprogrammingpatterns.com/subclass-sandbox.html
https://gameprogrammingpatterns.com/type-object.html
https://gameprogrammingpatterns.com/data-locality.html
https://unity.com/dots
https://gameprogrammingpatterns.com/spatial-partition.html
https://en.wikipedia.org/wiki/Grid_(spatial_index)
https://en.wikipedia.org/wiki/Quadtree
https://en.wikipedia.org/wiki/Octree
https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/Decorator_pattern

© 2024 Unity Technologies 147 of 147 | unity.com

| Flyweight pattern | Dirty flag | Conclusion

	— Facade: This provides a simple, unified interface to a more complex system. If you
have a GameObject with separate AI, animation, and sound components, you might
add a wrapper class around those components (imagine a Player controller class
managing PlayerInput, PlayerAudio, and so on). This facade hides details of the
original components and simplifies usage.

	— Template method: This pattern defers the exact steps of an algorithm into a
subclass. For example, you could define a rough skeleton of algorithm or data
structure in an abstract class but allow the subclasses to override certain parts
without changing the algorithm’s overall structure.

	— Composite: Use this structural design pattern to organize objects into tree
structures and then treat the resulting structure like you would individual objects.
You construct the tree from both simple and composite elements (a leaf and a
container). Every element implements the same interface so you can run the same
behavior recursively on the entire tree.

Note: All Wikipedia references in this e-book were made through a Creative Commons license:
https://creativecommons.org/licenses/by-sa/3.0/. No Wikipedia authors cited herein have
endorsed our work.

A series of advanced resources for Unity programmers
The programming design patterns guide is one in a series of resources we created for
experienced Unity programmers. The other e-books in the series are:

1.	 Create a C# style guide: Write cleaner code that scales

2.	 Create modular architecture in Unity with ScriptableObjects

You can find all the e-books (and many how-to articles) in the Unity best practices hub or via
the best practices page in Unity documentation.

https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Facade_pattern
https://en.wikipedia.org/wiki/Template_method_pattern
https://en.wikipedia.org/wiki/Composite_pattern
https://creativecommons.org/licenses/by-sa/3.0/
https://unity.com/resources/create-code-c-sharp-style-guide-e-book?isGated=false
https://unity.com/resources/create-modular-game-architecture-with-scriptable-objects-ebook?isGated=false
https://unity.com/how-to
https://docs.unity3d.com/Manual/best-practice-guides.html

unity.com

https://unity.com/releases/lts

	Botón 3:
	Página 6:
	Página 8:
	Página 12:
	Página 48:
	Página 51:
	Página 57:
	Página 66:
	Página 73:
	Página 80:
	Página 93:
	Página 102:
	Página 110:
	Página 121:
	Página 128:
	Página 137:
	Página 145:

