
© 2024 Unity Technologies

Optimize your game
performance for
mobile, XR, and the
web in Unity

 ⟶ E - B O O K

Contents

Introduction. . 8

Choose URP for performance and visual quality. 9

Rendering optimization. . 10

Profiling tips. . 11

Profile early, often, and on the target device. 11

Focus on optimizing the right areas 12

Understand how the Unity Profiler works. 14

Use the Profile Analyzer. . 18

Work on a specific time budget per frame 18

Account for device temperature. . 19

Determine if you are GPU-bound or CPU-bound. 19

Test on both min-spec and max-spec devices 20

Memory management for XR, web, and mobile games. 21

Efficient memory management. . 21

Use the Memory Profiler . . 23

Reduce the impact of garbage collection (GC) 23

Time garbage collection whenever possible 24

Use the Incremental Garbage Collector
 to split the GC workload . . 24

Adaptive Performance. . 25

Assets. . 27

Import textures correctly . . 28

Compress textures . . 29

Adjust mesh import settings . . 30

Check your polygon counts . . 31

Automate your import settings
using the AssetPostprocessor . . 31

Unity DataTools. . 31

Use the Addressable Asset System 32

Programming and code architecture . . 33

Understand the Unity PlayerLoop 34

Minimize code that runs every frame 35

Avoid heavy logic in Start/Awake 35

Avoid empty Unity events . . 36

Remove Debug Log statements 36

Use hash values instead of string parameters 37

Choose the right data structure 37

Avoid adding components at runtime 37

Cache GameObjects and components 37

Use object pools. . 38

Use ScriptableObjects . . 39

Project configuration. . 41

Reduce or disable Accelerometer Frequency 41

Disable unnecessary Player or Quality settings. 42

Disable unnecessary physics. . 42

Choose the right frame rate . . 42

Avoid large hierarchies. . 42

Transform once, not twice. . 43

Vsync in XR, web, and mobile development. 43

Vsync Count. . 44

Graphics and GPU optimization. . 45

GPU optimization . . 47

Benchmark the GPU. . 47

Watch the rendering statistics . . 48

Reduce Draw Calls. . 49

Use draw call batching. . 49

GPU Resident Drawer. . 51

Use the Frame Debugger . . 52

Split Graphics Jobs. . 53

Avoid too many dynamic lights 53

Disable shadows . . 54

Bake your lighting into lightmaps 54

GPU light baking . . 55

Use Light Layers . . 56

Adaptive Probe Volumes . . 56

Use Level of Detail (LOD) . . 58

Use occlusion culling to remove hidden objects 59

GPU occlusion culling. . 59

Avoid mobile native resolution . . 60

Limit use of cameras. . 60

Spatial-Temporal Post-Processing 60

Shaders. . 62

Keep shaders simple and optimized. 62

Minimize overdraw and alpha blending. 63

Limit post-processing effects . . 64

Be careful with Renderer.material 64

Optimize SkinnedMeshRenderers 64

Minimize reflection probes . . 65

System Metrics Mali. . 65

User interface . . 67

UGUI performance optimization tips. 67

Divide your Canvases. . 67

Hide invisible UI elements . . 68

Limit GraphicRaycasters and disable Raycast Target .68

Avoid Layout Groups. . 69

Avoid large List and Grid views 69

Avoid numerous overlaid elements. 69

Use multiple resolutions and aspect ratios 69

When using a fullscreen UI, hide everything else . . 70

Assign the Camera to World Space
and Camera Space Canvases 70

UI Toolkit performance optimization tips 71

Use efficient layouts. . 71

Avoid expensive operations in Update. 71

Optimize event handling. . 72

Optimize style sheets. . 72

Profile and optimize . . 72

Test on target platforms. . 72

Audio. . 73

Make sound clips mono when possible 74

Use original uncompressed WAV files
as your source assets. . 74

Compress the clip and reduce the compression bitrate . 74

Choose the proper Load Type . . 75

Unload muted AudioSources from memory 75

Use the Sample Rate Setting. . 75

Animation. . 76

Use generic rather than humanoid rigs. 76

Use alternatives for simple animation. 77

Avoid scale curves . . 77

Update only when visible. . 77

Optimize workflow . . 77

Separate animating hierarchies 78

Minimize binding costs. . 78

Avoid using component-based constraints on deep
hierarchies. . 78

Consider performance implications
of animation rigging. . 78

Physics . . 79

Simplify colliders . . 79

Optimize your settings. . 80

Adjust simulation frequency. . 80

Modify CookingOptions for MeshColliders. 82

Use Physics.BakeMesh. . 83

Use Box Pruning for large scenes. 84

Modify solver iterations. . 85

Disable automatic transform syncing. 86

Use Contact Arrays. . 87

Reuse Collision Callbacks. . 87

Move static colliders. . 88

Use non-allocating queries . . 89

Batch queries for ray casting . . 89

Visualize with the Physics Debugger 90

Workflow and collaboration. . 90

Unity Version Control. . 91

Break up large scenes . . 92

Remove unused resources . . 92

Platform-specific tips for Unity Web Builds 92

Framerate. . 93

Publishing settings for Unity Web 93

Compression . . 93

Strip engine code. . 94

Choose “None” in the Enable Exceptions setting . . 95

Target WebAssembly 2023 feature set. 96

Code Optimization settings 96

Profiling Unity Web Builds . . 96

Chrome DevTools. . 96

XR optimization tips . . 97

Render Mode. . 97

Foveated rendering. . 98

Utilize the XR Interaction Toolkit. 99

Performance testing for XR optimization 100

Resources for advanced developers and artists. 100

© 2024 Unity Technologies 8 of 100 | unity.com

Introduction

This guide brings together all the best and latest mobile, XR, and Unity Web performance
optimization tips for Unity 6. It is one of two optimization guides available, the other being
Optimize your game performance for consoles and PC in Unity.

Optimizing your mobile, XR, or Unity Web application is an essential process that underpins the
entire game development cycle. Hardware continues to evolve, and your game’s optimization –
along with its art, game design, audio, and monetization strategy – plays a key role in shaping
the player experience.

Mobile, XR, and web games have active user bases reaching the billions. In the case of mobile,
if your game is highly optimized, it has a better chance at passing certification from platform-
specific stores. Aim for a performant application on the widest range of devices to maximize
your opportunity for success at launch and beyond.

This e-book assembles knowledge and advice from Unity engineers who have partnered with
developers across the industry to help them launch the best games possible.

Start optimizing with support from the Unity team.1

1 Note that many of the optimizations discussed here may introduce additional complexity, which can mean extra maintenance and potential
bugs. Balance performance gains against the time and labor cost when implementing these best practices.

https://unity.com/releases/lts

© 2024 Unity Technologies 9 of 100 | unity.com

Unity recommends the Universal Render Pipeline (URP) for developing XR (extended
reality), web, and mobile games and applications. URP is designed for high performance
and scalability, offering efficient rendering that can adapt to a wide range of hardware. It
enables you to achieve better visual quality while maintaining smooth performance, making it
ideal for platforms where resource efficiency is crucial, such as WebGL and mobile devices.
Additionally, URP allows for easier customization, ensuring your applications run optimally
across diverse environments.

Choose URP as your render pipeline if you are developing a Unity mobile, XR, or web game.

Choose URP for
performance and
visual quality

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/urp-introduction.html

© 2024 Unity Technologies 10 of 100 | unity.com

| Introduction | Choose URP for performance and visual quality | Profiling tips |

In addition to selecting the URP you can adjust the render pipeline asset to further customize
your settings.

Rendering optimization
URP offers presets tailored for quality and performance. for tetherless VR experiences or AR
apps on mobile devices. Selecting the appropriate render settings optimizes your application
for mobile hardware, ensuring efficient rendering and smooth performance. The optimized
settings of URP manage texture quality, shadow resolution, and lighting efficiently, providing
a balance between visual fidelity and performance suitable for the constraints of mobile and
tetherless XR devices.

Render pipeline asset

https://unity.com/releases/lts

© 2024 Unity Technologies 11 of 100 | unity.com

Profiling tips

Profile early, often, and on the target device
Profiling is the process of measuring aspects of your game’s performance at runtime and to
track down the cause of a performance problem. By monitoring the profiling tool as you make
changes, you can gauge whether changes actually fix the performance problem.

https://unity.com/releases/lts

© 2024 Unity Technologies 12 of 100 | unity.com© 2024 Unity Technologies 12 of 100 | unity.com

| Choose URP for performance and visual quality | Profiling tips | Memory management for XR, web, and mobile games |

For mobile, XR, and web projects, it’s crucial to profile your application early and throughout the
development cycle, not just when you’re nearing launch. Address performance issues such as
glitches or spikes as soon as they appear, and benchmark performance before and after major
changes. By developing a clear “performance profile” for your project, you can more easily
identify and resolve new issues, ensuring optimal performance across all target platforms.

While profiling in the Editor can give you an idea of the relative performance of different
systems in your game, profiling on each device gives you the opportunity to gain more accurate
insights. Profile a development build on target devices whenever possible. Remember to profile
and optimize for both the highest- and lowest-spec devices that you plan to support.

Unity offers a suite of profiling tools to help identify bottlenecks including

the Unity Profiler, the Memory Profiler and Profile Analyzer. There are also native tools from
iOS and Android for further performance testing on their respective hardware:

	— On iOS, use Xcode and Instruments.

	— On Android / Arm use:

	— Android Studio: The latest Android Studio includes a new Android Profiler that
replaces the previous Android Monitor tools. Use it to gather real-time data about
hardware resources on Android devices.

	— Arm Mobile Studio: This suite of tools can help you profile and debug your games
in great detail, catering toward devices running Arm hardware.

	— Snapdragon Profiler: Specifically for Snapdragon chipset devices only. Analyze
CPU, GPU, DSP, memory, power, thermal, and network data to help find and fix
performance bottlenecks.

	— Developer tools for Meta Quest: See Meta’s developer tools website for
information about developing apps for Meta Quest headsets.

Certain hardware can also take advantage of Intel VTune, which helps you to find and fix
performance bottlenecks on Intel platforms (with Intel processors only).

Focus on optimizing the right areas
Don’t guess or make assumptions about what is slowing down your game’s performance. Use
the Unity Profiler and platform-specific tools to locate the precise source of a lag. Profiling
tools ultimately help you understand what’s going on under the hood of your Unity project,
but don’t wait for significant performance problems to start showing before digging into your
detective toolbox.

Of course, not every optimization described here will apply to your application. Something
that works well in one project may not translate to yours. Identify genuine bottlenecks and
concentrate your efforts on what benefits your work. To learn more about how to plan your
profiling workflows see the Ultimate guide to profiling Unity games.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/Profiler.html?
https://docs.unity3d.com/Packages/com.unity.memoryprofiler@1.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.performance.profile-analyzer@1.2/manual/index.html
https://developer.apple.com/documentation/xcode/
https://help.apple.com/instruments/mac/current/#/dev7b09c84f5
https://developer.android.com/studio/profile
https://developer.android.com/studio/profile/android-profiler
https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio
https://developer.qualcomm.com/software/snapdragon-profiler
https://developers.meta.com/horizon/resources/developer-tools/#performance-monitoring-and-profiling-tools
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://resources.unity.com/games/ultimate-guide-to-profiling-unity-games?ungated=true

© 2024 Unity Technologies 13 of 100 | unity.com© 2024 Unity Technologies 13 of 100 | unity.com

| Choose URP for performance and visual quality | Profiling tips | Memory management for XR, web, and mobile games |

A chart from the profiling e-book featuring a workflow you can follow to profile your Unity projects efficiently

https://unity.com/releases/lts
https://unity.com/releases/lts

© 2024 Unity Technologies 14 of 100 | unity.com© 2024 Unity Technologies 14 of 100 | unity.com

| Choose URP for performance and visual quality | Profiling tips | Memory management for XR, web, and mobile games |

Understand how the Unity Profiler works
The Unity Profiler can help you detect the causes of any lags or freezes at runtime and better
understand what’s happening at a specific frame or point in time.

The Profiler is instrumentation-based; it profiles timings of game and engine code that are
automatically marked up (such as MonoBehaviour’s Start or Update methods, or specific API
calls), or explicitly wrapped with the help of ProfilerMarker API.

Begin by enabling the CPU and Memory tracks as your default. You can monitor
supplementary Profiler Modules like Renderer, Audio, and Physics, as needed for your game
(e.g., physics-heavy or music-based gameplay).

Use the Unity Profiler to test performance and resource allocation for your application.

To capture profiling data from an actual mobile device within your chosen platform, check
the Development Build and Autoconnect Profiler boxes before you click Build and Run.
Alternatively, if you want the app to start separately from your profiling, you can uncheck the
Autoconnect Profiler box, and then connect manually once the app is running.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/Profiler.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Unity.Profiling.ProfilerMarker.html?

© 2024 Unity Technologies 15 of 100 | unity.com© 2024 Unity Technologies 15 of 100 | unity.com

| Choose URP for performance and visual quality | Profiling tips | Memory management for XR, web, and mobile games |

Adjust your Build Settings before profiling.

Choose the platform target to profile. The Record button tracks several seconds of your
application’s playback (300 frames by default). Go to Unity > Preferences > Analysis >
Profiler > Frame Count to increase this as far as 2000 if you need longer captures. While this
means that the Unity Editor has to do more CPU work and take up more memory, it can be
useful depending on your specific scenario.

https://unity.com/releases/lts
https://unity.com/releases/lts

© 2024 Unity Technologies 16 of 100 | unity.com© 2024 Unity Technologies 16 of 100 | unity.com

| Choose URP for performance and visual quality | Profiling tips | Memory management for XR, web, and mobile games |

Use the Timeline view to determine if you are CPU-bound or GPU-bound.

If you need in-depth analysis capturing detailed information about your application you can
also use the Deep Profiling setting. This enables Unity to profile the beginning and end of
every function call in your script code, telling you exactly which part of your application is
being executed and potentially causing a delay. However, deep profiling adds overhead to
every method call and may skew the performance analysis as it slows down the execution of
your game during the profiling session.

Click in the window to analyze a specific frame. Next, use either the Timeline or Hierarchy
view for the following:

	— Timeline shows the visual breakdown of timing for a specific frame. This allows you to
visualize how the activities relate to one another and across different threads. Use this
option to determine if you are CPU- or GPU-bound:

	— If the CPU frame time is significantly higher than the GPU frame time, your game
is CPU-bound. This means the CPU is taking longer to process the game logic,
physics, or other calculations, and the GPU is waiting for the CPU to finish its tasks.

	— Similarly, if the GPU frame time is higher than the CPU frame time, your game is
GPU-bound. This indicates that the GPU is taking longer to render graphics, and
the CPU is waiting for the GPU to finish rendering.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/ProfilerWindow.html#deep-profiling

© 2024 Unity Technologies 17 of 100 | unity.com© 2024 Unity Technologies 17 of 100 | unity.com

| Choose URP for performance and visual quality | Profiling tips | Memory management for XR, web, and mobile games |

	— The Timeline Hierarchy shows the hierarchy of ProfileMarkers, grouped together. This
allows you to sort the samples based on time cost in milliseconds (Time ms and Self
ms). You can also count the number of Calls to a function and the managed heap
memory (GC Alloc) on the frame. By sorting by Time ms or Self ms, you can then identify
the functions that are taking the most time, either on their own or due to the functions
they call. This helps you focus your optimization efforts on the areas that will give the
biggest performance gains.

The Hierarchy view allows you to sort ProfileMarkers by time cost.

You can find a complete overview of the Unity Profiler here. If you’re new to profiling, you can
also watch this Introduction to Unity Profiling.

Before optimizing anything in your project, save the Profiler .data file. Implement your changes
and compare the saved .data before and after the modification. Rely on this cycle to improve
performance: profile, optimize, and compare. Then, rinse and repeat.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://resources.unity.com/games/ultimate-guide-to-profiling-unity-games?ungated=true
https://youtube.com/watch?v=xjsqv8nj0cw

© 2024 Unity Technologies 18 of 100 | unity.com© 2024 Unity Technologies 18 of 100 | unity.com

| Choose URP for performance and visual quality | Profiling tips | Memory management for XR, web, and mobile games |

Use the Profile Analyzer
The Profile Analyzer lets you aggregate multiple frames of Profiler data and then locate frames
of interest. Do you want to see what happens to the Profiler after you make a change to your
project? The Compare view allows you to load and differentiate two data sets, so you can
test changes and improve their outcome. The Profile Analyzer is available via Unity’s Package
Manager. Watch this Profile Analyzer tutorial to learn more about its features.

Take an even deeper dive into frames and marker data with the Profile Analyzer, which complements the existing Profiler.

Work on a specific time budget per frame
Each frame will have a time budget based on your target frames per second (fps). For an
application to run at 30 fps, its frame budget can’t exceed 33.33 ms per frame (1000 ms/30
fps). Likewise, a target of 60 fps leaves 16.66 ms per frame (1000 / 60 fps).

When developing virtual reality (VR) apps, maintaining a high and stable frame rate is even
more critical to ensure a smooth and immersive experience, and to prevent motion sickness.
The most common target for VR applications is 90 fps, which gives you a strict frame budget

https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.performance.profile-analyzer@1.2/manual/index.html
https://www.youtube.com/watch?v=Ypg84Fr20Sw&t=1s

© 2024 Unity Technologies 19 of 100 | unity.com© 2024 Unity Technologies 19 of 100 | unity.com

| Choose URP for performance and visual quality | Profiling tips | Memory management for XR, web, and mobile games |

of just 11.11 ms per frame (1000 ms / 90 fps). This higher requirement is necessary because VR
needs to render each frame twice—once for each eye—and small imperfections in timing can
be far more noticeable to the user.

A consistent and high frame rate is also essential for Unity Web Builds, the performance of
which is highly dependent on the browser’s efficiency and the hardware capabilities. A tight
time budget per frame remains a critical factor. For example, if you’re targeting 60 fps in a
Unity WebGL build, you still have only 16.66 ms per frame to work with. This budget includes
all aspects of rendering, physics calculations, and game logic, which means that optimizing
every part of your application is crucial. Efficient management of assets, reducing the
complexity of scenes, and optimizing shaders and scripts are all necessary steps to ensure
that your application can meet its performance targets.

It’s also important to consider the impact of WebAssembly (Wasm) performance, which Unity
uses to compile and run your code in the browser. While Wasm offers significant performance
improvements over traditional JavaScript, it’s still important to profile and optimize your code
to ensure that you’re making the most of the available frame time.

Account for device temperature
For mobile, however, it’s generally not recommended to use this maximum time consistently
as the device can overheat and the OS can thermal throttle the CPU and GPU. A general rule
of thumb is use only about 65% of the available time to allow for cooldown between frames. A
typical frame budget will be approximately 22 ms per frame at 30 fps and 11 ms per frame at
60 fps.

Devices can exceed this budget for short periods of time (e.g., for cutscenes or loading
sequences) but not for a prolonged duration.

Most mobile devices do not have active cooling like their desktop counterparts. Physical heat
levels can directly impact performance.

If the device is running hot, the Profiler might perceive and report poor performance, even if
it is not cause for long-term concern. To combat profiling overheating, profile in short bursts.
This cools the device and simulates real-world conditions. Our general recommendation is to
keep the device cool for 10-15 minutes before profiling again.

Determine if you are GPU-bound or CPU-bound
The central processing unit (CPU) is responsible for determining what must be drawn, and the
graphics processing unit (GPU) is responsible for drawing it. When a rendering performance
problem is due to the CPU taking too long to render a frame, the game becomes CPU bound.
When a rendering performance problem is due to the GPU taking too long to render a frame, it
becomes GPU bound.

https://unity.com/releases/lts
https://unity.com/releases/lts

© 2024 Unity Technologies 20 of 100 | unity.com© 2024 Unity Technologies 20 of 100 | unity.com

| Choose URP for performance and visual quality | Profiling tips | Memory management for XR, web, and mobile games |

The Profiler can tell you if your CPU is taking longer than your allotted frame budget, or if the
culprit is your GPU. It does this by emitting markers prefixed with Gfx as follows:

	— If you see the Gfx.WaitForCommands marker, it means that the render thread is ready,
but you might be waiting for a bottleneck on the main thread.

	— If you frequently encounter Gfx.WaitForPresent, it means that the main thread is ready
but might be waiting for the GPU to present the frame.

Test on both min-spec and max-spec devices
There is a wide range of iOS and Android devices out there. We want to reiterate the
importance of testing your project on the minimum and maximum device specifications that
you want your application to support, whenever possible.

https://unity.com/releases/lts
https://unity.com/releases/lts

© 2024 Unity Technologies 21 of 100 | unity.com

Memory management
for XR, web, and
mobile games

Effective memory management is crucial for ensuring smooth performance. Unity handles
automatic memory management for your scripts and user-generated code, allocating small,
transient data on the stack and larger, long-term data on managed or native heaps. However,
the demands of XR, web, and mobile applications require a more careful approach to memory
usage, as inefficient memory management can lead to performance issues such as slow
frame rates, increased load times, and even application crashes. In this section, we’ll explore
strategies to optimize memory usage across these platforms, helping you deliver responsive
and stable applications.

Efficient memory management
To deliver smooth and responsive experiences across platforms, it’s essential to carefully
manage object lifecycles, minimize garbage collection overhead, and optimize asset loading
strategies.

Manage object lifecycles: Properly manage the creation and destruction of objects to prevent
memory leaks and unnecessary resource usage. Use Destroy() to remove unused objects and
set references to null when they are no longer needed, which can free up memory.

Object pooling: Reuse frequently used objects, such as bullets, enemies, and UI elements,
rather than creating and destroying them repeatedly. Implementing object pools can
significantly reduce the overhead associated with object instantiation and destruction and
save on memory resources. Read more about object pooling in a Unity project.

https://unity.com/releases/lts
https://unity.com/how-to/use-object-pooling-boost-performance-c-scripts-unity

© 2024 Unity Technologies 22 of 100 | unity.com© 2024 Unity Technologies 22 of 100 | unity.com© 2024 Unity Technologies 22 of 100 | unity.com

| Profiling tips | Memory management for XR, web, and mobile games | Adaptive Performance |

Reduce garbage collection impact: Minimize allocations to reduce the frequency and impact
of garbage collection, which can cause performance hitches. Avoid frequent allocations
in update loops by preallocating arrays and lists where possible. Use value types (structs)
instead of reference types (classes) when appropriate, as structs are allocated on the stack
and do not contribute to garbage collection overhead.

Optimize asset loading with the following techniques:

	— Lazy loading: Defer the loading of resources until they are actually needed. This can
facilitate faster initial load times and more efficient resource management.

	— Unload unused assets: Use Resources.UnloadUnusedAssets(), to free up memory
occupied by assets that are no longer needed.

	— Use the Addressable Asset System: Utilize the Addressable Asset System to manage
assets asynchronously at runtime. This system is particularly beneficial for web and
mobile platforms, supporting remote asset hosting, dynamic content updates, and lazy
loading.

The garbage collector periodically identifies and deallocates unused managed heap memory.
The asset garbage collection runs on demand or when you load a new scene and deallocates
native objects and resources. While this runs automatically, the process of examining all the
objects in the heap can cause the game to stutter or run slowly.

Optimizing your memory usage means being conscious of when you allocate and deallocate
heap memory, and how you minimize the effect of garbage collection.

See Understanding the managed heap for more information.

Capture, inspect, and compare snapshots in the Memory Profiler.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/performance-memory-overview.html

© 2024 Unity Technologies 23 of 100 | unity.com© 2024 Unity Technologies 23 of 100 | unity.com© 2024 Unity Technologies 23 of 100 | unity.com

| Profiling tips | Memory management for XR, web, and mobile games | Adaptive Performance |

Use the Memory Profiler
The Memory Profiler package takes a snapshot of your managed heap memory to help you
identify problems like fragmentation and memory leaks. For a quick introduction check out this
Unity video here.

Use the Unity Objects tab to identify areas where you can eliminate duplicate memory entries
or find which objects use the most memory. The All of Memory tab displays a breakdown of
all the memory in the snapshot that Unity tracks.

Learn how to leverage the Memory Profiler in Unity for improved memory usage.

Reduce the impact of garbage collection (GC)
Unity uses the Boehm-Demers-Weiser garbage collector, which stops running your program
code and only resumes normal execution once its work is complete.

Be aware of certain unnecessary heap allocations that can cause GC spikes:

	— Strings: In C#, strings are reference types, not value types. Reduce unnecessary string
creation or manipulation if you are using them at large scale. Avoid parsing string-
based data files such as JSON and XML; store data in ScriptableObjects or formats
like MessagePack or Protobuf instead. Use the StringBuilder class if you need to build
strings at runtime.

	— Unity function calls: Some functions create heap allocations. Cache references to arrays
rather than allocating them in the middle of a loop. Also, take advantage of certain
functions that avoid generating garbage. For example, use GameObject.CompareTag
instead of manually comparing a string with GameObject.tag (as returning a new string
creates garbage).

	— Boxing: Avoid passing a value-typed variable in place of a reference-typed variable.
This creates a temporary object, and the potential garbage that comes with it implicitly
converts the value type to a type object (e.g., int i = 123; object o = i). Instead, try to
provide concrete overrides with the value type you want to pass in. Generics can also be
used for these overrides.

	— Coroutines: Though yield does not produce garbage, creating a new WaitForSeconds
object does. Cache and reuse the WaitForSeconds object rather than creating it in the
yield line.

	— LINQ and Regular Expressions: Both of these generate garbage from behind-the-
scenes boxing. Avoid LINQ and Regular Expressions if performance is an issue. Write for
loops and use lists as an alternative to creating new arrays.

For more information, see the manual page on Garbage collection best practices.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.memoryprofiler@1.1/manual/index.html
https://www.youtube.com/watch?v=Uuzd39AjFWQ&t
https://docs.unity3d.com/Packages/com.unity.memoryprofiler@latest
https://www.hboehm.info/gc/
https://msdn.microsoft.com/en-us/library/system.text.stringbuilder
https://docs.unity3d.com/6000.0/Documentation/Manual/performance-garbage-collection-best-practices.html

© 2024 Unity Technologies 24 of 100 | unity.com© 2024 Unity Technologies 24 of 100 | unity.com© 2024 Unity Technologies 24 of 100 | unity.com

| Profiling tips | Memory management for XR, web, and mobile games | Adaptive Performance |

Time garbage collection whenever possible
If you are certain that a garbage collection freeze won’t affect a specific point in your game,
you can trigger garbage collection with System.GC.Collect.

See Understanding automatic memory management for examples of how to use this to your
advantage.

Use the Incremental Garbage Collector to split the GC
workload
Rather than creating a single, long interruption during your program’s execution, incremental
garbage collection uses multiple, much shorter interruptions that distribute the workload over
many frames. If garbage collection is impacting performance, try enabling this option to see
if it can reduce the problem of GC spikes. Use the Profile Analyzer to verify its benefit to your
application.

Use the Incremental Garbage Collector to reduce GC spikes.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/performance-garbage-collector.html
https://docs.unity3d.com/6000.0/Documentation/Manual/performance-garbage-collector.html

© 2024 Unity Technologies 25 of 100 | unity.com

Adaptive Performance

With Unity and Samsung’s Adaptive Performance, you can monitor the device’s thermal and
power state to ensure that you are ready to react appropriately. When users play for an
extended period of time, you can reduce your level of detail (LOD) bias dynamically so that
your game continues to run smoothly. Adaptive Performance allows developers to increase
performance in a controlled way while maintaining graphics fidelity.

While you can use Adaptive Performance APIs to fine-tune your application, Adaptive
Performance also offers several automatic modes. In these modes, Adaptive Performance
determines the game settings along several key metrics:

	— Desired frame rate based on previous frames

	— Device temperature level

	— Device proximity to thermal event

	— Device bound by CPU or GPU

These four metrics dictate the state of the device, and Adaptive Performance tweaks the
adjusted settings to reduce the bottleneck. This is done by providing an integer value, known
as an Indexer, to describe the state of the device.

To learn more about Adaptive Performance, you can view the samples we’ve provided in
the Package Manager by selecting Package Manager > Adaptive Performance > Samples.
Each sample interacts with a specific scaler, so you can see how the different scalers impact
your game. We also recommend reviewing the end-user documentation to learn more about
Adaptive Performance configurations and how you can interact directly with the API.

https://unity.com/releases/lts
https://developer.samsung.com/galaxy-gamedev/ap-userguide/v2.html
https://docs.unity3d.com/Packages/com.unity.adaptiveperformance@2.1/manual/samples-guide.html
https://docs.unity3d.com/Packages/com.unity.adaptiveperformance@5.0/manual/samples-guide.html
https://docs.unity3d.com/Packages/com.unity.adaptiveperformance@5.0/manual/index.html

© 2024 Unity Technologies 26 of 100 | unity.com© 2024 Unity Technologies 26 of 100 | unity.com© 2024 Unity Technologies 26 of 100 | unity.com

| Memory management for XR, web, and mobile games | Adaptive Performance | Assets |

© 2024 Unity Technologies 26 of 100 | unity.com

Note that Adaptive Performance only works for Samsung devices.

The Adaptive Performance package

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

© 2024 Unity Technologies 27 of 100 | unity.com

Assets

A well-optimized asset pipeline can speed up load times, reduce memory usage, and improve
runtime performance. By working with an experienced technical artist, your team can define
and enforce asset formats, specifications, and import settings to ensure an efficient and
streamlined workflow.

Don’t rely solely on default settings. Take advantage of the platform-specific override tab to
optimize assets like textures, mesh geometry, and audio files. Incorrect settings can result in
larger build sizes, longer build times, and poor memory usage.

Consider using Presets to establish baseline settings tailored to your specific project needs.
This proactive approach helps ensure that assets are optimized from the start, leading to
better performance and a more consistent experience across all platforms.

For more guidance, refer to the best practices for art assets or explore the 3D Art Optimization
for Mobile Applications course on Unity Learn. These resources provide valuable insights that
can help you make informed decisions about asset optimization for Unity web builds, mobile,
and XR applications.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/Presets.html
https://docs.unity3d.com/Manual/HOWTO-ArtAssetBestPracticeGuide.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-elevate-your-game&utm_content=optimize-mobile-game-performance-ebook
https://learn.unity.com/course/3d-art-optimization-for-mobile-gaming-5474?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=mobile-performance-optimization-ebook
https://learn.unity.com/course/3d-art-optimization-for-mobile-gaming-5474?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=mobile-performance-optimization-ebook

© 2024 Unity Technologies 28 of 100 | unity.com© 2024 Unity Technologies 28 of 100 | unity.com© 2024 Unity Technologies 28 of 100 | unity.com© 2024 Unity Technologies 28 of 100 | unity.com

| Adaptive Performance | Assets | Programming and code architecture |

© 2024 Unity Technologies 28 of 100 | unity.com

Import textures correctly
Import settings are crucial because textures often consume the most memory. Consider the
following guidelines to optimize your textures:

	— Lower the Max Size: Use the minimum settings that produce visually acceptable results.
This is non-destructive and can quickly reduce your texture memory.

	— Use powers of two (POT): Unity requires POT texture dimensions for mobile texture
compression formats (PVRCT or ETC).

	— Atlas your textures: Atlasing is the
process of grouping together several
smaller textures into a single larger
texture of uniform size. Placing multiple
textures into a single texture can reduce
draw calls and speed up rendering. Use
the Unity Sprite Atlas or the third-party
TexturePacker to atlas your textures.

	— Toggle off the Read/Write Enabled
option: When enabled, this option
creates a copy in both CPU- and GPU-
addressable memory, doubling the
texture’s memory footprint. In most
cases, keep this disabled. If you are
generating textures at runtime, enforce
this via Texture2D.Apply, passing in
makeNoLongerReadable set to true.

	— Disable unnecessary mipmaps: While
mipmaps can optimize performance by
reducing the amount of detail that needs
to be rendered at different distances
from the camera, they aren’t always
needed. For textures that remain at a
consistent size onscreen, such as 2D
sprites and UI graphics you can leave
them out (leave mipmaps enabled for 3D
models with varying distance from the
camera).

Proper texture import settings will help optimize your build size.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/class-SpriteAtlas.html?
https://www.codeandweb.com/texturepacker

© 2024 Unity Technologies 29 of 100 | unity.com© 2024 Unity Technologies 29 of 100 | unity.com© 2024 Unity Technologies 29 of 100 | unity.com© 2024 Unity Technologies 29 of 100 | unity.com

| Adaptive Performance | Assets | Programming and code architecture |

© 2024 Unity Technologies 29 of 100 | unity.com

Compress textures
Consider these two examples using the same model and texture. The settings on the left
consume almost 26 times the memory as those on the right, without much improvement in
visual quality.

Uncompressed textures require more memory.

Use Adaptive Scalable Texture Compression (ATSC) for mobile, XR and Web. The vast majority
of games in development tend to target min-spec devices that support ATSC compression.

The only exceptions are:

	— iOS games targeting A7 devices or lower (e.g., iPhone 5, 5S, etc.) – use PVRTC

	— Android games targeting devices prior to 2016 – use ETC2 (Ericsson Texture
Compression)

If compressed formats such as PVRTC and ETC aren’t sufficiently high-quality, and if ASTC is
not fully supported on your target platform, try using 16-bit textures instead of 32-bit textures.

See the manual for more information on recommended texture compression format by
platform.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/class-TextureImporterOverride.html
https://docs.unity3d.com/6000.0/Documentation/Manual/class-TextureImporterOverride.html

© 2024 Unity Technologies 30 of 100 | unity.com© 2024 Unity Technologies 30 of 100 | unity.com© 2024 Unity Technologies 30 of 100 | unity.com© 2024 Unity Technologies 30 of 100 | unity.com

| Adaptive Performance | Assets | Programming and code architecture |

© 2024 Unity Technologies 30 of 100 | unity.com

Selecting ASTC for texture compression under the build settings

Adjust mesh import settings
Just like textures, meshes can consume significant memory, so choose optimal import settings
for them. Reduce the memory footprint of meshes with the following practices:

	— Compress the mesh: Aggressive compression can reduce disk space (memory at
runtime, however, is unaffected). Note that mesh quantization can result in inaccuracies,
so experiment with compression levels to see what works for your models.

	— Disable Read/Write: Enabling this option duplicates the mesh in memory, which keeps
one copy of the mesh in system memory and another in GPU memory. In most cases,
you should disable it (in Unity 2019.2 and earlier, this option is checked by default).

	— Disable rigs and blend shapes: If your mesh does not need skeletal or blendshape
animation, disable these options wherever possible.

	— Disable normals and tangents: If you are absolutely certain that the mesh material will
not need normals or tangents, uncheck these options for extra savings.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

© 2024 Unity Technologies 31 of 100 | unity.com© 2024 Unity Technologies 31 of 100 | unity.com© 2024 Unity Technologies 31 of 100 | unity.com© 2024 Unity Technologies 31 of 100 | unity.com

| Adaptive Performance | Assets | Programming and code architecture |

© 2024 Unity Technologies 31 of 100 | unity.com

Check your mesh import settings.

Check your polygon counts
Higher-resolution models mean more memory usage and potentially longer GPU times. Does
your background geometry need half a million polygons? Consider cutting down models in
your DCC package of choice. Delete unseen polygons from the camera’s point of view, and use
textures and normal maps for fine detail instead of high-density meshes.

Automate your import settings using the
AssetPostprocessor
The AssetPostprocessor allows you to hook into the import pipeline and run scripts prior to or
when importing assets. This prompts you to customize settings before and/or after importing
models, textures, audio, and so on in a way similar to presets but through code. Learn more
about the process in our GDC 2023 talk, “Technical tips for every stage of game creation.”

Unity DataTools
Unity DataTools is a collection of open source tools provided by Unity that aims to enhance
data management and serialization capabilities in Unity projects. It includes features for
analyzing and optimizing project data, such as identifying unused assets, detecting asset
dependencies, and reducing build size.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/AssetPostprocessor.html?
https://youtu.be/o_QBMz0WZjI?list=PLX2vGYjWbI0TkxPwhWgsBhvj-EwxJDt5x&t=816
https://github.com/Unity-Technologies/UnityDataTools

© 2024 Unity Technologies 32 of 100 | unity.com© 2024 Unity Technologies 32 of 100 | unity.com© 2024 Unity Technologies 32 of 100 | unity.com© 2024 Unity Technologies 32 of 100 | unity.com

| Adaptive Performance | Assets | Programming and code architecture |

© 2024 Unity Technologies 32 of 100 | unity.com

Use the Addressable Asset System
The Addressable Asset System provides a simplified way to manage your content. This unified
system loads AssetBundles by “address” or alias, asynchronously from either a local path or a
remote content delivery network (CDN).

If you split your non-code assets (models, textures, Prefabs, audio, and even entire scenes)
into an AssetBundle, you can separate them as downloadable content (DLC).

Then, use Addressables to create a smaller initial build for your mobile application. Cloud
Content Delivery lets you host and deliver your game content to players as they progress
through the game.

Load assets by “address” using the Addressable Asset System.

Click here to see how the Addressable Asset System can take the hassle out of asset
management.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.addressables@2.3/manual/index.html
https://docs.unity3d.com/6000.0/Documentation/Manual/AssetBundlesIntro.html?
https://unity.com/products/cloud-content-delivery
https://unity.com/products/cloud-content-delivery
https://unity.com/how-to/simplify-your-content-management-addressables?

© 2024 Unity Technologies 33 of 100 | unity.com

Programming and
code architecture

The Unity PlayerLoop contains functions for interacting with the core of the game engine. This
structure includes a number of systems that handle initialization and per-frame updates. All of
your scripts will rely on this PlayerLoop to create gameplay.

When profiling, you’ll see your project’s user code under the PlayerLoop (with Editor
components under the EditorLoop).

The Profiler will show your custom scripts, settings, and graphics in the context of the entire engine’s execution.

Optimize your scripts with the following tips and tricks.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/LowLevel.PlayerLoop.html

© 2024 Unity Technologies 34 of 100 | unity.com© 2024 Unity Technologies 34 of 100 | unity.com© 2024 Unity Technologies 34 of 100 | unity.com© 2024 Unity Technologies 34 of 100 | unity.com© 2024 Unity Technologies 34 of 100 | unity.com

| Assets | Programming and code architecture | Project configuration |

© 2024 Unity Technologies 34 of 100 | unity.com

Understand the Unity PlayerLoop
Make sure you understand the execution order of Unity’s frame loop. Every Unity script runs
several event functions in a predetermined order. You should understand the difference
between Awake, Start, Update, and other functions that create the lifecycle of a script. You
can utilize the Low-Level API to add custom logic to the player’s update loop.

Get to know the PlayerLoop and the lifecycle of a script.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/ExecutionOrder.html?

© 2024 Unity Technologies 35 of 100 | unity.com© 2024 Unity Technologies 35 of 100 | unity.com© 2024 Unity Technologies 35 of 100 | unity.com© 2024 Unity Technologies 35 of 100 | unity.com© 2024 Unity Technologies 35 of 100 | unity.com

| Assets | Programming and code architecture | Project configuration |

© 2024 Unity Technologies 35 of 100 | unity.com

Minimize code that runs every frame
Consider whether code must run every frame. Move unnecessary logic out of Update,
LateUpdate, and FixedUpdate. These event functions are convenient places to put code that
must update every frame, while extracting any logic that does not need to update with that
frequency. Whenever possible, only execute logic when things change.

If you do need to use Update, consider running the code every n frames. This is one way
to apply time slicing, a common technique of distributing a heavy workload across multiple
frames. In this example, we run the ExampleExpensiveFunction once every three frames:

private int interval = 3;
void Update()
{
 if (Time.frameCount % interval == 0)
 {
 ExampleExpensiveFunction();
 }
}

Better yet, if ExampleExpensiveFunction performs some operation on a set of data, consider
using time slicing to operate on a different subset of that data every frame. By doing 1/n of the
work every frame rather than all of the work every n frames, you end up with performance that
is more stable and predictable overall, rather than seeing periodic CPU spikes.

Avoid heavy logic in Start/Awake
When your first scene loads, these functions get called for each object:

	— Awake

	— OnEnable/OnDisable

	— Start

Avoid expensive logic in these functions until your application renders its first frame.
Otherwise, you might encounter longer loading times than necessary.

Refer to the order of execution for event functions for more details.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/ExecutionOrder.html?

© 2024 Unity Technologies 36 of 100 | unity.com© 2024 Unity Technologies 36 of 100 | unity.com© 2024 Unity Technologies 36 of 100 | unity.com© 2024 Unity Technologies 36 of 100 | unity.com© 2024 Unity Technologies 36 of 100 | unity.com

| Assets | Programming and code architecture | Project configuration |

© 2024 Unity Technologies 36 of 100 | unity.com

Avoid empty Unity events
Even empty MonoBehaviours require resources, so you should remove blank Update or
LateUpdate methods.

Use preprocessor directives if you are employing these methods for testing:

#if UNITY_EDITOR
void Update()
{
}
#endif

Here, you can freely use the Update in-Editor for testing without unnecessary overhead
slipping into your build.

Remove Debug Log statements
Log statements (especially in Update, LateUpdate, or FixedUpdate) can bog down
performance. Disable your Log statements before making a build.

To do this more easily, consider making a Conditional attribute along with a preprocessing
directive. For example, create a custom class like this:

public static class Logging
{
 [System.Diagnostics.Conditional(“ENABLE_LOG”)]
 static public void Log(object message)
 {
 UnityEngine.Debug.Log(message);
 }
}

Adding a custom preprocessor directive lets you partition your scripts.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.conditionalattribute?view=net-5.0

© 2024 Unity Technologies 37 of 100 | unity.com© 2024 Unity Technologies 37 of 100 | unity.com© 2024 Unity Technologies 37 of 100 | unity.com© 2024 Unity Technologies 37 of 100 | unity.com© 2024 Unity Technologies 37 of 100 | unity.com

| Assets | Programming and code architecture | Project configuration |

© 2024 Unity Technologies 37 of 100 | unity.com

Generate your log message with your custom class. If you disable the ENABLE_LOG
preprocessor in the Player Settings, all of your Log statements disappear in one fell swoop.

The same thing applies for other use cases of the Debug Class, such as Debug.DrawLine
and Debug.DrawRay. These are also only intended for use during development and can
significantly impact performance.

Use hash values instead of string parameters
Unity does not use string names to address animator, material, and shader properties
internally. For speed, all property names are hashed into property IDs, and these IDs are
actually used to address the properties.

When using a Set or Get method on an animator, material, or shader, harness the integer-
valued method instead of the string-valued methods. The string methods simply perform
string hashing and then forward the hashed ID to the integer-valued methods.

Use Animator.StringToHash for Animator property names and Shader.PropertyToID for material
and shader property names. Get these hashes during initialization and cache them in variables
for when they’re needed to pass to a Get or Set method.

Choose the right data structure
Your choice of data structure impacts efficiency as you iterate thousands of times per frame.
Not sure whether to use a List, Array, or Dictionary for your collection? Follow the MSDN guide
to data structures in C# as a general guide for choosing the correct structure.

Avoid adding components at runtime
Invoking AddComponent at runtime comes with some cost. Unity must check for duplicate or
other required components whenever adding components at runtime.

Instantiating a prefab with the desired components already set up is generally more performant.

Cache GameObjects and components
It’s best to cache references in either Awake or Start in order to avoid calling them in the
Update method..

Here’s an example that demonstrates the inefficient use of a repeated GetComponent call:

void Update()
{
 Renderer myRenderer = GetComponent<Renderer>();
 ExampleFunction(myRenderer);
}

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Animator.StringToHash.html?
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Shader.PropertyToID.html?
https://msdn.microsoft.com/en-us/library/7y3x785f
https://msdn.microsoft.com/en-us/library/7y3x785f
https://docs.unity3d.com/6000.0/Documentation/Manual/Prefabs.html

© 2024 Unity Technologies 38 of 100 | unity.com© 2024 Unity Technologies 38 of 100 | unity.com© 2024 Unity Technologies 38 of 100 | unity.com© 2024 Unity Technologies 38 of 100 | unity.com© 2024 Unity Technologies 38 of 100 | unity.com

| Assets | Programming and code architecture | Project configuration |

© 2024 Unity Technologies 38 of 100 | unity.com

Use object pools
Instantiate and Destroy can generate garbage and garbage collection (GC) spikes, which
generally results in a slow process. Apply object pooling techniques when you need to
instantiate a large number of objects.

In this example, the ObjectPool creates 20 PlayerLaser instances for reuse.

A best practice for object pooling is to create the reusable instances when a CPU spike is less
noticeable (e.g., during a menu screen). Then track this “pool” of objects with a collection.
During gameplay, enable the next available instance when needed, disable objects instead of
destroying them, and return them to the pool.

It’s more efficient to invoke GetComponent only once, as the result of the function is cached.
The cached result can be reused in Update without any further calls to GetComponent.

private Renderer myRenderer;
void Start()
{
 myRenderer = GetComponent<Renderer>();
}
void Update()
{
 ExampleFunction(myRenderer);
}

In Unity versions prior to Unity 2020.2 GameObject.Find, GameObject.GetComponent,
and Camera.main used to be very expensive, however this is no longer the case. That
said, it’s best to avoid calling them in Update methods and follow the practice above by
caching the results.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

© 2024 Unity Technologies 39 of 100 | unity.com© 2024 Unity Technologies 39 of 100 | unity.com© 2024 Unity Technologies 39 of 100 | unity.com© 2024 Unity Technologies 39 of 100 | unity.com© 2024 Unity Technologies 39 of 100 | unity.com

| Assets | Programming and code architecture | Project configuration |

© 2024 Unity Technologies 39 of 100 | unity.com

An example of a pool of projectile objects that’s inactive and ready to shoot.

This reduces the number of managed allocations in your project and can prevent garbage
collection problems. Unity includes a built-in object pooling feature via the UnityEngine.Pool
namespace. Available in Unity 2021 LTS and later, this namespace facilitates the management
of object pools, automating aspects like object lifecycle and pool size control.

Learn how to create a simple object pooling system in Unity here. You can also see the
object pooling pattern, and many others, implemented in a Unity scene in this sample project
available on the Unity Asset Store.

Use ScriptableObjects
Store static values or settings in a ScriptableObject instead of a MonoBehaviour. The
ScriptableObject is an asset that lives inside of the project that you only need to set up once.

MonoBehaviours carry extra overhead since they require a GameObject – and by default
a Transform – to act as a host. That means you need to create a lot of unused data before
storing a single value. The ScriptableObject slims down this memory footprint by dropping the
GameObject and Transform. It also stores the data at the project level, which is helpful if you
need to access the same data from multiple scenes.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Pool.ObjectPool_1.html
https://learn.unity.com/tutorial/introduction-to-object-pooling
https://assetstore.unity.com/packages/essentials/tutorial-projects/level-up-your-code-with-design-patterns-and-solid-289616
https://assetstore.unity.com/packages/essentials/tutorial-projects/level-up-your-code-with-design-patterns-and-solid-289616

© 2024 Unity Technologies 40 of 100 | unity.com© 2024 Unity Technologies 40 of 100 | unity.com© 2024 Unity Technologies 40 of 100 | unity.com© 2024 Unity Technologies 40 of 100 | unity.com© 2024 Unity Technologies 40 of 100 | unity.com

| Assets | Programming and code architecture | Project configuration |

© 2024 Unity Technologies 40 of 100 | unity.com

A common use case is having many GameObjects that rely on the same duplicate data that
does not need to change at runtime. Rather than having this duplicate local data on each
GameObject, you can funnel it into a ScriptableObject. Then, each of the objects stores a
reference to the shared data asset, rather than copying the data itself. This can provide
significant performance improvements in projects with thousands of objects.

Create fields in the ScriptableObject to store your values or settings, then reference the
ScriptableObject in your MonoBehaviours.

In this example, a ScriptableObject called Inventory holds settings for various GameObjects.

Using those fields from the ScriptableObject can prevent unnecessary duplication of data
every time you instantiate an object with that MonoBehaviour.

In software design, this is an optimization known as the flyweight pattern. Restructuring your
code in this way using ScriptableObjects avoids copying a lot of values and reduces your
memory footprint. Learn more about the flyweight pattern and many others, as well as design
principles, in the e-book Level up your code with design patterns and SOLID.

Watch this Introduction to ScriptableObjects devlog to see how ScriptableObjects can benefit
your project. Reference Unity documentation here as well as the technical guide Create
modular game architecture in Unity with ScriptableObjects.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/resources/design-patterns-solid-ebook?isGated=alse
https://youtu.be/WLDgtRNK2VE
https://youtu.be/WLDgtRNK2VE
https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://resources.unity.com/games/create-modular-game-architecture-with-scriptable-objects-ebook?ungated=true
https://resources.unity.com/games/create-modular-game-architecture-with-scriptable-objects-ebook?ungated=true

© 2024 Unity Technologies 41 of 100 | unity.com

Project configuration

There are a few Project Settings that can affect your mobile performance.

Reduce or disable Accelerometer Frequency
Unity pools your mobile’s accelerometer several times per second. Disable this if it’s not being
used in your application, or reduce its frequency for better overall performance.

Ensure your Accelerometer Frequency is disabled if you are not making use of it in your mobile game.

https://unity.com/releases/lts

© 2024 Unity Technologies 42 of 100 | unity.com© 2024 Unity Technologies 42 of 100 | unity.com© 2024 Unity Technologies 42 of 100 | unity.com© 2024 Unity Technologies 42 of 100 | unity.com© 2024 Unity Technologies 42 of 100 | unity.com

| Programming and code architecture | Project configuration | Graphics and GPU optimization |

© 2024 Unity Technologies 42 of 100 | unity.com

Disable unnecessary Player or Quality settings
In the Player settings, disable Auto Graphics API for unsupported platforms to prevent
generating excessive shader variants. Disable Target Architectures for older CPUs if your
application is not supporting them.

In the Quality settings, disable needless Quality levels.

Disable unnecessary physics
If your game is not using physics, uncheck Auto Simulation and Auto Sync Transforms.
These will just slow down your application with no discernible benefit.

Choose the right frame rate
Mobile projects must balance frame rates against battery life and thermal throttling. Instead of
pushing the limits of your device at 60 fps, consider running at 30 fps as a compromise. Unity
defaults to 30 fps for mobile.

When targeting XR platforms, the frame rate considerations are even more critical. A
frame rate of 72 fps, 90 fps, or even 120 fps, is often necessary to maintain immersion and
prevent motion sickness. These higher frame rates help ensure a smooth and responsive
experience, which is crucial for comfort in VR environments. However, these come with their
own challenges in terms of power consumption and thermal management, particularly in
standalone VR headsets.

Choosing the right frame rate is about understanding the specific demands and constraints of
your target platform, whether it’s a mobile device, a standalone VR headset, or an AR device.
By carefully selecting an appropriate frame rate, you can optimize both performance and user
experience across different platforms.

You can also adjust the frame rate dynamically during runtime with Application.
targetFrameRate. For example, you could drop below 30 fps for slow or relatively static
scenes and reserve higher fps settings for gameplay.

Avoid large hierarchies
Split your hierarchies. If your GameObjects do not need to be nested in a hierarchy, simplify
the parenting. Smaller hierarchies benefit from multithreading to refresh the Transforms in
your scene. Complex hierarchies incur unnecessary Transform computations and more cost to
garbage collection.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

© 2024 Unity Technologies 43 of 100 | unity.com© 2024 Unity Technologies 43 of 100 | unity.com© 2024 Unity Technologies 43 of 100 | unity.com© 2024 Unity Technologies 43 of 100 | unity.com© 2024 Unity Technologies 43 of 100 | unity.com

| Programming and code architecture | Project configuration | Graphics and GPU optimization |

© 2024 Unity Technologies 43 of 100 | unity.com

Transform once, not twice
Additionally, when moving Transforms, use Transform.SetPositionAndRotation to update both
position and rotation at once. This avoids the overhead of modifying a transform twice.

If you need to instantiate a GameObject at runtime, a simple optimization is to parent and
reposition during instantiation:

GameObject.Instantiate(prefab, parent);
GameObject.Instantiate(prefab, parent, position, rotation);

For more on Object.Instantiate, please see the Scripting API.

Vsync in XR, web, and mobile development

When developing for XR, web, and mobile platforms, assume that Vsync (Vertical
Synchronization) is enabled, even if you disable it in the Unity Editor (Project Settings >
Quality). Vsync is often enforced at the hardware level on these platforms to prevent screen
tearing and ensure smooth visual output. If the GPU cannot render a frame quickly enough to
match the display’s refresh rate, the current frame will be held and displayed again, effectively
reducing your fps. Let’s look at how this works per platform.

	— Mobile Platforms: Mobile devices typically enforce Vsync to match the display’s refresh
rate, often at 60Hz or higher on newer devices. If your application’s frame rate drops
below this target, the device will hold the previous frame, causing noticeable stuttering
or input lag. It’s crucial to optimize rendering performance to maintain a steady frame
rate, ensuring smooth operation across a variety of mobile devices with different
performance capabilities.

	— Web Platforms: Web browsers also tend to enforce Vsync, particularly in Unity Web, to
ensure synchronization with the display’s refresh rate. Given the additional overhead
of running within a browser, optimizing your application to maintain a consistent frame
rate is essential to avoid visible performance drops. Test across different browsers and
devices as web platforms can vary in their capabilities.

	— XR Platforms: In XR environments, maintaining a high and stable frame rate is even more
critical due to the immersive nature of these experiences. Most XR devices enforce
Vsync at 90Hz or higher, and any drop in frame rate can lead to discomfort or motion
sickness for users. Optimizing every aspect of your application, from rendering to
physics calculations, is essential to ensure the GPU can consistently meet these high
demands.

By understanding how Vsync is managed across XR, web, and mobile platforms, and by
optimizing your application to maintain a consistent frame rate, you can deliver smoother,
more responsive experiences that meet the expectations of users on these diverse platforms.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Transform.SetPositionAndRotation.html?
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Object.Instantiate.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Object.Instantiate.html

© 2024 Unity Technologies 44 of 100 | unity.com© 2024 Unity Technologies 44 of 100 | unity.com© 2024 Unity Technologies 44 of 100 | unity.com© 2024 Unity Technologies 44 of 100 | unity.com© 2024 Unity Technologies 44 of 100 | unity.com

| Programming and code architecture | Project configuration | Graphics and GPU optimization |

© 2024 Unity Technologies 44 of 100 | unity.com

Vsync Count

The Vsync Count setting in Unity’s Quality settings determines how the rendering of frames is
synchronized with the display’s refresh rate. When set to Every V Blank (equivalent to a Vsync
Count of 1), Unity synchronizes the rendering of frames with each vertical blank, effectively
capping the frame rate to match the display’s refresh rate (e.g., 60Hz = 60 FPS). This helps
prevent screen tearing and ensures smooth visual output.

Alternatively, setting it to Every Second V Blank (Vsync Count of 2) halves the frame rate,
which might be useful in situations where your application struggles to maintain full refresh
rate performance. Disabling Vsync (Don’t Sync) allows for maximum FPS but can result
in screen tearing. On some platforms, Vsync may still be enforced at the hardware level
regardless of this setting.

VSync count within the Quality settings

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

© 2024 Unity Technologies 45 of 100 | unity.com

Graphics and GPU
optimization

With each frame, Unity determines the objects that must be rendered and then creates draw
calls. A draw call is a call to the graphics API to draw objects (e.g., a triangle), whereas a batch
is a group of draw calls to be executed together.

As your projects become more complex, you’ll need a pipeline that optimizes the workload
on your GPU. The Universal Render Pipeline (URP) supports three options for rendering:
Forward, Forward+, and Deferred.

Forward rendering evaluates all lighting in a single pass and is generally recommended as default
for mobile games. Forward+, introduced with Unity 2022 LTS, improves upon standard Forward
rendering by culling lights spatially rather than per object. This significantly increases the overall
number of lights that can be utilized in rendering a frame. Deferred mode is a good choice for
specific cases, such as for games with lots of dynamic light sources. The same physically based
lighting and materials from consoles and PCs can also scale to your phone or tablet.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/index.html

© 2024 Unity Technologies 46 of 100 | unity.com© 2024 Unity Technologies 46 of 100 | unity.com© 2024 Unity Technologies 46 of 100 | unity.com© 2024 Unity Technologies 46 of 100 | unity.com© 2024 Unity Technologies 46 of 100 | unity.com

| Project configuration | Graphics and GPU optimization | GPU optimization |

© 2024 Unity Technologies 46 of 100 | unity.com

The following table compares the three rendering options in URP.

Learn more about using URP in Unity projects in the e-book Introduction to the Universal
Render Pipeline for advanced Unity creators.

Feature Forward Forward+ Deferred

Maximum
number of real-
time lights per
object

9
Unlimited; the
per-Camera limit
applies

Unlimited

Per pixel normal
encoding

No encoding
(accurate
normal
values)

No encoding
(accurate normal
values)

Two options:

Quantization of normals in G-buffer (loss of
accuracy, better performance)

Octahedron encoding (accurate normals,
might have significant performance impact
on mobile GPUs)

For more information, see Encoding of
normals in G-buffer.

MSAA Yes Yes No

Vertex lighting Yes No No

Camera
stacking

Yes Yes

Supported with a limitation: Unity renders
only the base Camera using the Deferred
path; Unity renders all overlay Cameras
using the Forward Rendering path

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/rendering/forward-plus-rendering-path.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/rendering/forward-plus-rendering-path.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/rendering/forward-plus-rendering-path.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/rendering/deferred-rendering-path.html#accurate-g-buffer-normals
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/rendering/deferred-rendering-path.html#accurate-g-buffer-normals

© 2024 Unity Technologies 47 of 100 | unity.com

GPU optimization

To optimize your graphics rendering, it’s essential to understand the limitations of your target
hardware – whether it’s VR, mobile, or web – and how to effectively profile the GPU. Profiling
allows you to check and verify that your optimizations are having the desired impact.

	— VR: VR hardware demands high frame rates (typically 90 FPS or higher) and low
latency to maintain a smooth and immersive experience. The GPU needs to render
complex scenes twice (once for each eye), which requires careful optimization of both
performance and visual fidelity.

	— Mobile: Mobile devices have limited processing power and memory compared to
desktops and consoles. Optimizations should focus on minimizing draw calls, reducing
texture sizes, and using simplified shaders to ensure smooth performance without
draining the battery or overheating the device.

	— Web: Web platforms, particularly when using Unity Web, must balance performance
with the constraints of running in a browser environment. Optimization should prioritize
reducing build size, minimizing load times, and ensuring compatibility across different
browsers and hardware configurations.

Use these best practices for reducing the rendering workload on the GPU.

Benchmark the GPU
When profiling, it’s useful to start with a benchmark. A benchmark tells you what profiling
results you should expect from specific GPUs.

https://unity.com/releases/lts

© 2024 Unity Technologies 48 of 100 | unity.com© 2024 Unity Technologies 48 of 100 | unity.com© 2024 Unity Technologies 48 of 100 | unity.com© 2024 Unity Technologies 48 of 100 | unity.com© 2024 Unity Technologies 48 of 100 | unity.com

| Graphics and GPU optimization | GPU optimization | Shaders |

© 2024 Unity Technologies 48 of 100 | unity.com

See GFXBench for a great list of different industry-standard benchmarks for GPUs and
graphics cards. The website provides a good overview of the current GPUs available and how
they stack up against each other.

Watch the rendering statistics
Click the Stats button in the top right of the Game view. This window shows you real-time
rendering information about your application during Play mode. Use this data to help optimize
performance:

	— fps: Frames per second

	— CPU Main: Total time to process one frame (and update the Editor for all windows)

	— CPU Render thread: Total time to render one frame of the Game view

	— Batches: Groups of draw calls to be drawn together

	— Tris (triangles) and Verts (vertices): Mesh geometry complexity

	— SetPass calls: The number of times Unity must switch shader passes to render the
GameObjects onscreen; each pass can introduce extra CPU overhead.

Note: In-Editor fps does not necessarily translate to build performance. We recommend
that you profile your build for the most accurate results. Frame time in milliseconds is a
more accurate metric than frames per second when benchmarking.

Stats window displaying real-time rendering info

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://gfxbench.com/result.jsp
http://www.mvps.org/directx/articles/fps_versus_frame_time.htm

© 2024 Unity Technologies 49 of 100 | unity.com© 2024 Unity Technologies 49 of 100 | unity.com© 2024 Unity Technologies 49 of 100 | unity.com© 2024 Unity Technologies 49 of 100 | unity.com© 2024 Unity Technologies 49 of 100 | unity.com

| Graphics and GPU optimization | GPU optimization | Shaders |

© 2024 Unity Technologies 49 of 100 | unity.com

Reduce Draw Calls
When rendering a GameObject, it issues a draw call to the graphics API (e.g., OpenGL,
Vulkan, or Direct3D). Each draw call is resource-intensive, as the CPU must prepare and send
the necessary data to the GPU, which then processes the command to render the object.
Frequent state changes between draw calls, such as switching materials, can further increase
CPU overhead.

While PC and console hardware can handle a large number of draw calls, the overhead
remains significant enough to justify optimization. On mobile devices, VR headsets, and web
browsers, draw call optimization is crucial for maintaining performance. By reducing the
number of draw calls, you can ensure smoother and more efficient rendering, especially on
resource-constrained platforms.

To optimize performance, especially on web, VR, and mobile platforms, reducing draw calls is
essential. Here are key strategies to achieve this:

1.	 Use a texture atlas: Combine multiple textures into a single texture atlas to minimize
the number of texture bindings and draw calls. This is particularly important in web and
mobile environments where reducing state changes can improve rendering efficiency.

2.	 Optimize materials: Limit the number of materials and shaders used in your project.
Shared materials are easier to batch together and reduce the draw call overhead.

3.	 Implement LOD (Level of Detail): Use LOD techniques to decrease the complexity of
distant objects, reducing the number of draw calls for objects that are far from the
camera. This approach is vital for VR, where maintaining high frame rates is critical to
prevent motion sickness, and for mobile platforms, where processing power is limited.

4.	 Apply culling techniques: Use frustum culling and occlusion culling to ensure that only
visible objects are rendered. By not drawing objects that are outside the camera’s view
or obscured by other geometry, you can reduce the number of draw calls, improving
performance across all platforms, especially in resource-constrained web and mobile
environments.

Use draw call batching

Draw call batching is an optimization method that combines meshes so that Unity can render
them in fewer draw calls.

Draw call batching minimizes these state changes and reduces the CPU cost of rendering
objects. Unity can combine multiple objects into fewer batches using several techniques:

	— SRP Batching: If you are using HDRP or URP, enable the SRP Batcher in your Pipeline
Asset settings under Advanced. When using compatible shaders, the SRP Batcher
reduces the GPU setup between draw calls and makes material data persistent in GPU
Memory. This can speed up your CPU rendering times significantly. Use fewer Shader
Variants with a minimal amount of Keywords to improve SRP batching. Consult this SRP
documentation to see how your project can take advantage of this rendering workflow.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/DrawCallBatching.html?
https://blog.unity.com/engine-platform/srp-batcher-speed-up-your-rendering
https://docs.unity3d.com/6000.0/Documentation/Manual/SL-MultipleProgramVariants.html?
https://docs.unity3d.com/6000.0/Documentation/Manual/SL-MultipleProgramVariants.html?
https://docs.unity3d.com/6000.0/Documentation/Manual/SRPBatcher.html
https://docs.unity3d.com/6000.0/Documentation/Manual/SRPBatcher.html

© 2024 Unity Technologies 50 of 100 | unity.com© 2024 Unity Technologies 50 of 100 | unity.com© 2024 Unity Technologies 50 of 100 | unity.com© 2024 Unity Technologies 50 of 100 | unity.com© 2024 Unity Technologies 50 of 100 | unity.com

| Graphics and GPU optimization | GPU optimization | Shaders |

© 2024 Unity Technologies 50 of 100 | unity.com

SRP Batcher helps you batch draw calls.

	— GPU instancing: If you have a large number of identical objects (e.g., buildings, trees,
grass, and so on with the same mesh and material), use GPU instancing. This technique
batches them using graphics hardware. To enable GPU Instancing, select your material
in the Project window, and in the Inspector, check Enable Instancing.

	— Static batching: For non-moving geometry, Unity can reduce draw calls for any meshes
sharing the same material. It is more efficient than dynamic batching, but it uses more
memory.

Mark all meshes that never move as Batching Static in the Inspector. Unity combines
all static meshes into one large mesh at build time. The StaticBatchingUtility also allows
you to create these static batches yourself at runtime (for example, after generating a
procedural level of non-moving parts).

	— Dynamic Batching: For small meshes, Unity can group and transform vertices on the
CPU, then draw them all in one go. Note: Do not use this unless you have enough
low-poly meshes (no more than 300 vertices each and 900 total vertex attributes).
Otherwise, enabling it will waste CPU time looking for small meshes to batch.

You can maximize the effects of batching with a few simple rules:

	— Use as few textures in a scene as possible. Fewer textures require fewer unique
materials, making them easier to batch. Additionally, use texture atlases wherever
possible.

	— Always bake lightmaps at the largest atlas size possible. Fewer lightmaps require fewer
material state changes, but keep an eye on the memory footprint.

	— Be careful not to instance materials unintentionally. Accessing Renderer.material in
scripts duplicates the material and returns a reference to the new copy. This breaks
any existing batch that already includes the material. If you wish to access the batched
object’s material, use Renderer.sharedMaterial instead.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/GPUInstancing.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/StaticBatchingUtility.html?
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Renderer-material.html?
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Renderer-sharedMaterial.html?

© 2024 Unity Technologies 51 of 100 | unity.com© 2024 Unity Technologies 51 of 100 | unity.com© 2024 Unity Technologies 51 of 100 | unity.com© 2024 Unity Technologies 51 of 100 | unity.com© 2024 Unity Technologies 51 of 100 | unity.com

| Graphics and GPU optimization | GPU optimization | Shaders |

© 2024 Unity Technologies 51 of 100 | unity.com

	— Keep an eye on the number of static and dynamic batch counts versus the total draw call
count by using the Profiler or the rendering stats during optimizations.

Please refer to the Draw Call Batching documentation for more information.

GPU Resident Drawer

The GPU Resident Drawer (available for both URP and HDRP) is a GPU-driven rendering
system that optimizes CPU time to boost performance. It supports cross-platform rendering,
including high-end mobile platforms using Vulkan and Metal, and is designed to work out-of-
the-box with existing projects.

The GPU Resident Drawer uses the BatchRendererGroup API to draw GameObjects with GPU
instancing, which reduces the number of draw calls and frees CPU processing time. The GPU
Resident Drawer works only with the following:

	— The Forward+ rendering path

	— Graphics APIs and platforms that support compute shaders, except OpenGL ES

	— GameObjects that have a Mesh Renderer component

GPU Resident Drawer: Selecting Instanced Drawing in the Render Pipeline Asset

Upon selecting the Instanced Drawing option you may get a message in the UI warning you
that “BatchRenderGroup Variants setting must be ‘Keep All’”. Adjusting this option in the
graphics settings completes the setup for the GPU Resident Drawer.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/DrawCallBatching.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/gpu-resident-drawer.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@17.0/manual/gpu-resident-drawer.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/gpu-resident-drawer.html
https://docs.unity3d.com/Manual/batch-renderer-group.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/rendering/forward-plus-rendering-path.html
https://docs.unity3d.com/6000.0/Documentation/Manual/GraphicsAPIs.html
https://docs.unity3d.com/6000.0/Documentation/Manual/class-MeshRenderer.html

© 2024 Unity Technologies 52 of 100 | unity.com© 2024 Unity Technologies 52 of 100 | unity.com© 2024 Unity Technologies 52 of 100 | unity.com© 2024 Unity Technologies 52 of 100 | unity.com© 2024 Unity Technologies 52 of 100 | unity.com

| Graphics and GPU optimization | GPU optimization | Shaders |

© 2024 Unity Technologies 52 of 100 | unity.com

Set the BatchRenderGroup Varient to Keep All within the Graphics settings.

Use the Frame Debugger

The Frame Debugger shows how each frame is constructed from individual draw calls. This
is an invaluable tool for troubleshooting your shader properties that can help you analyze the
way your game is rendered.

The Frame Debugger breaks each frame into its separate steps.

New to the Frame Debugger? Check out this introductory tutorial here.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/FrameDebugger.html
https://learn.unity.com/tutorial/working-with-the-frame-debugger

© 2024 Unity Technologies 53 of 100 | unity.com© 2024 Unity Technologies 53 of 100 | unity.com© 2024 Unity Technologies 53 of 100 | unity.com© 2024 Unity Technologies 53 of 100 | unity.com© 2024 Unity Technologies 53 of 100 | unity.com

| Graphics and GPU optimization | GPU optimization | Shaders |

© 2024 Unity Technologies 53 of 100 | unity.com

Split Graphics Jobs
This threading mode, supported on multiple desktop and console platforms, aims to
improve CPU multi-threading performance. The primary improvement comes from reducing
unnecessary synchronization between the main thread (responsible for general game logic
and orchestration) and native graphics job threads (responsible for rendering tasks).

The performance improvements from this new threading mode scale with the number of draw
calls submitted in each frame. Scenes with more draw calls, e.g., complex scenes with many
objects and textures, can see significant performance enhancements.

Avoid too many dynamic lights

When developing for XR, mobile, or web platforms, it’s important to limit the use of dynamic
lights, especially when using forward rendering. Dynamic lights can significantly impact
performance, leading to frame rate drops and increased power consumption, which is
particularly critical in resource-constrained environments.

Instead, consider using alternatives such as custom shader effects and light probes for
dynamic objects, which can simulate lighting without the heavy performance cost. For static
objects, baked lighting is a more efficient option, as it provides high-quality lighting without
the runtime overhead. By carefully managing lighting, you can maintain visual quality while
optimizing performance across XR, mobile, and web applications.

See this feature comparison table for the specific limits of URP and Built-in Render Pipeline
real-time lights.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/render-pipelines-feature-comparison.html

© 2024 Unity Technologies 54 of 100 | unity.com© 2024 Unity Technologies 54 of 100 | unity.com© 2024 Unity Technologies 54 of 100 | unity.com© 2024 Unity Technologies 54 of 100 | unity.com© 2024 Unity Technologies 54 of 100 | unity.com

| Graphics and GPU optimization | GPU optimization | Shaders |

© 2024 Unity Technologies 54 of 100 | unity.com

Disable shadows

Shadow casting can be disabled per MeshRenderer and light. Disable shadows whenever
possible to reduce draw calls.

You can also create fake shadows using a blurred texture applied to a simple mesh or quad
underneath your characters. Otherwise, you can create blob shadows with custom shaders.

Disable shadow casting to reduce draw calls.

Bake your lighting into lightmaps

Add dramatic lighting to your static geometry using Global Illumination (GI). Mark objects with
Contribute GI so you can store high-quality lighting in the form of lightmaps.

Enable the Contribute GI setting.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

© 2024 Unity Technologies 55 of 100 | unity.com© 2024 Unity Technologies 55 of 100 | unity.com© 2024 Unity Technologies 55 of 100 | unity.com© 2024 Unity Technologies 55 of 100 | unity.com© 2024 Unity Technologies 55 of 100 | unity.com

| Graphics and GPU optimization | GPU optimization | Shaders |

© 2024 Unity Technologies 55 of 100 | unity.com

Baked shadows and lighting can then render without a performance hit at runtime. The
Progressive CPU and GPU Lightmappers can accelerate the baking of Global Illumination.

To limit memory usage, adjust the Lightmapping Settings (Windows > Rendering > Lighting Settings) and Lightmap size.

Follow the manual guide and this article on light optimization to get started with Lightmapping
in Unity.

GPU light baking
The Progressive GPU Lightmapper is production-ready in Unity 6. It’s designed to dramatically
accelerate lighting data generation by leveraging the power of the GPU, offering faster bake
times compared to traditional CPU lightmapping. This system introduces a new light baking
backend that simplifies the codebase and delivers more predictable results. Additionally, the
minimum GPU requirement has been lowered to 2GB, making this feature accessible to a wider
range of developers. It also includes a new API for moving light probe positions at runtime,
which is particularly useful for procedurally-generated content, alongside various quality-of-
life improvements.

Selecting the Progressive GPU Lightmapper

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/Lightmapping.html
https://unity.com/de/archive/blog/games/lighting-tips-for-mobile-game-development
https://docs.unity3d.com/6000.0/Documentation/Manual/GPUProgressiveLightmapper.html

© 2024 Unity Technologies 56 of 100 | unity.com© 2024 Unity Technologies 56 of 100 | unity.com© 2024 Unity Technologies 56 of 100 | unity.com© 2024 Unity Technologies 56 of 100 | unity.com© 2024 Unity Technologies 56 of 100 | unity.com

| Graphics and GPU optimization | GPU optimization | Shaders |

© 2024 Unity Technologies 56 of 100 | unity.com

Use Light Layers

For complex scenes with multiple lights, separate your objects using layers, then confine each
light’s influence to a specific culling mask.

Layers can limit your light’s influence to a specific culling mask.

Adaptive Probe Volumes
Unity 6 introduces Adaptive Probe Volumes (APVs), which provide a sophisticated solution
for handling global illumination in Unity, allowing for dynamic and efficient lighting in complex
scenes. APVs can optimize both performance and visual quality, particularly on mobile and
lower-end devices, while offering advanced capabilities for high-end platforms.

Adaptive Probe Volumes (APV) in Unity offer a range of features to enhance global
illumination, particularly in dynamic and large scenes. URP now supports per-vertex sampling
for improved performance on lower-end devices, while VFX particles benefit from indirect
lighting baked into probe volumes.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-concept.html

© 2024 Unity Technologies 57 of 100 | unity.com© 2024 Unity Technologies 57 of 100 | unity.com© 2024 Unity Technologies 57 of 100 | unity.com© 2024 Unity Technologies 57 of 100 | unity.com© 2024 Unity Technologies 57 of 100 | unity.com

| Graphics and GPU optimization | GPU optimization | Shaders |

© 2024 Unity Technologies 57 of 100 | unity.com

Placing APVs in the oasis environment from the URP 3D Sample

APV data can be streamed from disk to CPU and GPU, optimizing lighting information for large
environments. Developers can bake and blend multiple lighting scenarios, allowing real-time
transitions like day/night cycles. The system also supports sky occlusion, integrates with the
Ray Intersector API for more efficient probe calculations, and offers control over light probe
sample density to reduce light leaking and speed up iterations. The new C# baking API further
refines the workflow, enabling independent baking of APV from lightmaps or reflection probes.

To get started, check out the talk Efficient and impactful lighting with Adaptive Probe Volumes
from GDC 2023

The Adaptive Probe Volumes window, located in Lighting settings

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/demos/urp-3d-sample
https://www.youtube.com/watch?v=iU7X5xICkc8
https://www.youtube.com/watch?v=iU7X5xICkc8

© 2024 Unity Technologies 58 of 100 | unity.com© 2024 Unity Technologies 58 of 100 | unity.com© 2024 Unity Technologies 58 of 100 | unity.com© 2024 Unity Technologies 58 of 100 | unity.com© 2024 Unity Technologies 58 of 100 | unity.com

| Graphics and GPU optimization | GPU optimization | Shaders |

© 2024 Unity Technologies 58 of 100 | unity.com

Use Level of Detail (LOD)
As objects move farther from the camera, Level of Detail (LOD) can adjust or switch them to
use simpler meshes with simpler materials and shaders, to refine GPU performance.

Example of a mesh using an LOD Group

Source meshes, modeled at varying resolutions

See the Working with LODs course on Unity Learn for more detail.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/Manual/LevelOfDetail.html?
https://learn.unity.com/tutorial/working-with-lods-2019-3

© 2024 Unity Technologies 59 of 100 | unity.com© 2024 Unity Technologies 59 of 100 | unity.com© 2024 Unity Technologies 59 of 100 | unity.com© 2024 Unity Technologies 59 of 100 | unity.com© 2024 Unity Technologies 59 of 100 | unity.com

| Graphics and GPU optimization | GPU optimization | Shaders |

© 2024 Unity Technologies 59 of 100 | unity.com

Use occlusion culling to remove hidden objects
Objects hidden behind other objects can potentially still render and cost resources. Use
occlusion culling to discard them.

While frustum culling outside the camera view is automatic, occlusion culling is a baked
process. Simply mark your objects as Static Occluders or Occludees, then bake via Window
> Rendering > Occlusion Culling. Though not necessary for every scene, culling can improve
performance in specific cases, so be sure to profile before and after enabling occlusion culling
to check if it has improved performance.

Check out the Working with Occlusion Culling tutorial for more information.

GPU occlusion culling
GPU occlusion culling significantly improves rendering performance, especially in scenes
with complex geometries and many occluded objects. GPU occlusion culling boosts the
performance of GameObjects by reducing the amount of overdraw for each frame, which
means the renderer is not wasting resources drawing things that are not seen, an issue that
traditionally has been a significant performance bottleneck in 3D environments. The key
features of GPU occlusion culling include:

5.	 GPU acceleration: Unlike previous versions that relied heavily on CPU for occlusion
culling, Unity 6 leverages GPU acceleration. This shift allows for more efficient real-time
calculations, reducing the overhead on the CPU and enabling more complex scenes
without sacrificing performance.

6.	 Integration with GPU Resident Drawer: The GPU occlusion culling works in tandem with
the GPU Resident Drawer, which handles large sets of objects and their visibility, further
optimizing rendering pipelines for both static and dynamic objects.

7.	 Dynamic and static object culling: Unity 6’s occlusion culling system can manage both
static and dynamic objects more effectively. Dynamic objects are now culled using a
portal-based system, which ensures that only the visible objects are processed, even
when they move within the scene.

8.	 Baking and real-time adjustments: Developers can bake occlusion data in the Editor,
which is then used at runtime. This process divides the scene into cells and computes
visibility between them, allowing for real-time adjustments as the camera moves. The
system also supports visualizing occlusion culling in the Editor, helping developers
optimize their scenes better.

9.	 Memory management: Unity 6 provides tools to manage the memory footprint
of occlusion data, allowing fine-tuning of the occlusion culling process to balance
performance with memory usage.

To activate GPU occlusion culling locate the Render Pipeline Asset and toggle the GPU
Occlusion check box.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://learn.unity.com/tutorial/working-with-occlusion-culling
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/gpu-culling.html

© 2024 Unity Technologies 60 of 100 | unity.com© 2024 Unity Technologies 60 of 100 | unity.com© 2024 Unity Technologies 60 of 100 | unity.com© 2024 Unity Technologies 60 of 100 | unity.com© 2024 Unity Technologies 60 of 100 | unity.com

| Graphics and GPU optimization | GPU optimization | Shaders |

© 2024 Unity Technologies 60 of 100 | unity.com

The GPU Occlusion Culling option in the Render Pipeline Asset

Avoid mobile native resolution
With phones and tablets becoming increasingly advanced, newer devices tend to sport very
high resolutions.

You can use Screen.SetResolution(width, height, false) to lower the output resolution and
regain some performance. Profile multiple resolutions to find the best balance between quality
and speed.

Limit use of cameras
Each enabled camera incurs some overhead, whether it’s doing meaningful work or not. Only
use Camera components required for rendering. On lower-end mobile platforms, each camera
can use up to 1 ms of CPU time.

Spatial-Temporal Post-Processing
Spatial-Temporal Post-Processing (STP) is designed to enhance visual quality across a wide
range of platforms, from mobile devices to consoles and PCs. STP is a spatio-temporal anti-
aliasing upscaler that works with both HDRP and URP render pipelines, offering high-quality
content scaling without the need for changes to existing content. This solution is optimized

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

© 2024 Unity Technologies 61 of 100 | unity.com© 2024 Unity Technologies 61 of 100 | unity.com© 2024 Unity Technologies 61 of 100 | unity.com© 2024 Unity Technologies 61 of 100 | unity.com© 2024 Unity Technologies 61 of 100 | unity.com

| Graphics and GPU optimization | GPU optimization | Shaders |

© 2024 Unity Technologies 61 of 100 | unity.com

for GPU performance, ensuring faster rendering times and making it easier to achieve high
performance while maintaining visual quality.

To enable STP in the URP:

	— Select the active URP Asset in the Project window.

	— In the Inspector navigate to Quality > Upscaling Filter, and select Spatial-Temporal
Post-Processing.

Enabling STP within the URP Asset

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

© 2024 Unity Technologies 62 of 100 | unity.com

Shaders

Keep shaders simple and optimized
URP offers a range of lightweight Lit and Unlit shaders that are optimized for mobile platforms,
making them a great starting point for your web, mobile, and XR projects. To maximize
performance, keep your shader variations to a minimum, as multiple variants can impact
runtime memory usage, particularly on resource-constrained devices.

If the default URP shaders don’t meet your specific needs, you can customize them using
Shader Graph, which allows you to visually design and optimize shaders for your project. Here
are a few shader optimization tips:

	— Minimize calculations: Simplify shaders by reducing the number of operations,
especially in fragment shaders, where each pixel requires computation. Avoid complex
mathematical operations and heavy branching logic (e.g., if statements), which can be
taxing on the GPU, particularly in mobile and XR applications.

	— Use combined textures: Utilize combined textures like occlusion, roughness, and
metallic (ORM) maps to reduce the number of texture lookups. This approach
consolidates multiple maps into a single texture, lowering the workload on the GPU,
which is crucial for maintaining performance on mobile, web, and XR platforms.

	— Optimize Shader Graph: When using Shader Graph, focus on streamlining shader logic
to enhance performance. This is particularly important for mobile and XR applications,
where the efficiency of each shader directly impacts overall performance.

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.shadergraph@17.0/manual/index.html

© 2024 Unity Technologies 63 of 100 | unity.com© 2024 Unity Technologies 63 of 100 | unity.com© 2024 Unity Technologies 63 of 100 | unity.com© 2024 Unity Technologies 63 of 100 | unity.com© 2024 Unity Technologies 63 of 100 | unity.com

| GPU optimization | Shaders | User interface |

© 2024 Unity Technologies 63 of 100 | unity.com

	— Profile regularly: Continuously test and profile your shaders on the target devices,
whether web, mobile, or XR, to ensure they meet performance requirements. Regular
profiling helps you catch potential issues early and optimize accordingly for each
platform’s specific needs.

Create custom shaders with Shader Graph.

Minimize overdraw and alpha blending
Avoid drawing unnecessary transparent or semi-transparent images, and do not overlap
barely visible images or effects. Mobile platforms are impacted by the resulting overdraw and
alpha blending. You can check overdraw using the RenderDoc graphics debugger. You can
also utilize the Rendering Debugger, which lets you visualize various lighting, rendering, and
material properties. The visualizations help you identify rendering issues and optimize scenes
and rendering configurations.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/RenderDocIntegration.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/features/rendering-debugger.html

© 2024 Unity Technologies 64 of 100 | unity.com© 2024 Unity Technologies 64 of 100 | unity.com© 2024 Unity Technologies 64 of 100 | unity.com© 2024 Unity Technologies 64 of 100 | unity.com© 2024 Unity Technologies 64 of 100 | unity.com

| GPU optimization | Shaders | User interface |

© 2024 Unity Technologies 64 of 100 | unity.com

Limit post-processing effects
Fullscreen post-processing effects like glows can dramatically slow down performance. Use
them cautiously in your title’s art direction. Post-processing can be a common source for
performance bottlenecks on mobile, XR, and web so be extra careful to benchmark and make
artistic choices accordingly.

Keep post-processing effects simple in mobile applications.

Be careful with Renderer.material
Accessing Renderer.material in scripts duplicates the material and returns a reference to the
new copy. This breaks any existing batch that already includes the material. If you wish to
access the batched object’s material, use Renderer.sharedMaterial instead.

Optimize SkinnedMeshRenderers
Rendering skinned meshes is expensive. Make sure that every object using a
SkinnedMeshRenderer requires it. If a GameObject only needs animation some of the time,
use the BakeMesh function to freeze the skinned mesh in a static pose, then swap to a
simpler MeshRenderer at runtime.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/integration-with-post-processing.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Renderer-sharedMaterial.html?
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Renderer-sharedMaterial.html?

© 2024 Unity Technologies 65 of 100 | unity.com© 2024 Unity Technologies 65 of 100 | unity.com© 2024 Unity Technologies 65 of 100 | unity.com© 2024 Unity Technologies 65 of 100 | unity.com© 2024 Unity Technologies 65 of 100 | unity.com

| GPU optimization | Shaders | User interface |

© 2024 Unity Technologies 65 of 100 | unity.com

Minimize reflection probes
A Reflection Probe component can create realistic reflections, but can be very costly in terms
of batches. Use low-resolution cubemaps, culling masks, and texture compression to improve
runtime performance.

System Metrics Mali
You can also leverage the System Metrics Mali package to access low-level system or hardware
performance metrics on devices that use ARM GPUs. This includes being able to monitor low-
level GPU metrics in the Unity Profiler, use the Recorder API to access low-level GPU metrics at
runtime, and automate performance testing with continuous integration test runs.

Mali System Metrics Profiler Module

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/class-ReflectionProbe.html?

© 2024 Unity Technologies 66 of 100 | unity.com© 2024 Unity Technologies 66 of 100 | unity.com© 2024 Unity Technologies 66 of 100 | unity.com© 2024 Unity Technologies 66 of 100 | unity.com© 2024 Unity Technologies 66 of 100 | unity.com

| GPU optimization | Shaders | User interface |

© 2024 Unity Technologies 66 of 100 | unity.com

Learn much more about lighting workflows in Unity from these guides:

	— Introduction to the Universal Render Pipeline for advanced Unity creators

	— 2D light and shadow techniques in URP

	— Lighting and AI techniques for your 2D game

	— Recipes for popular visual effects in URP

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/how-to/2d-light-shadow-techniques-in-the-universal-render-pipeline
https://www.youtube.com/watch?v=R1B5Aw8oBGg
https://unity.com/resources/the-universal-render-pipeline-cookbook-unity-2022-lts-edition?isGated=false

© 2024 Unity Technologies 67 of 100 | unity.com

User interface

Unity offers two UI systems, the older Unity UI and the new UI Toolkit. UI Toolkit is intended to
become the recommended UI system. It’s tailored for maximum performance and reusability,
with workflows and authoring tools inspired by standard web technologies, meaning UI
designers and artists will find it familiar if they already have experience designing web pages.

However, as of Unity 6, UI Toolkit does not have some features that Unity UI and Immediate
Mode GUI (IMGUI) support. Unity UI and IMGUI are more appropriate for certain use cases and
are required to support legacy projects. See the Comparison of UI systems in Unity for more
information.

UGUI performance optimization tips
Unity UI (UGUI) can often be a source of performance issues. The Canvas component
generates and updates meshes for the UI elements and issues draw calls to the GPU. Its
functioning can be expensive, so keep the following factors in mind when working with it.

Divide your Canvases

If you have one large Canvas with thousands of elements, updating a single UI element forces
the whole Canvas to update, which can potentially generate a CPU spike.

Take advantage of UGUI’s ability to support multiple Canvases. Divide UI elements based on
how frequently they need to be refreshed. Keep static UI elements on a separate Canvas, and
dynamic elements that update at the same time on smaller sub-canvases.

Ensure that all UI elements within each Canvas have the same Z value, materials, and textures.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/UIElements.html
https://docs.unity3d.com/6000.0/Documentation/Manual/com.unity.ugui.html
https://docs.unity3d.com/6000.0/Documentation/Manual/GUIScriptingGuide.html
https://docs.unity3d.com/6000.0/Documentation/Manual/GUIScriptingGuide.html
https://docs.unity3d.com/6000.0/Documentation/Manual/UI-system-compare.html

© 2024 Unity Technologies 68 of 100 | unity.com© 2024 Unity Technologies 68 of 100 | unity.com© 2024 Unity Technologies 68 of 100 | unity.com© 2024 Unity Technologies 68 of 100 | unity.com© 2024 Unity Technologies 68 of 100 | unity.com

| Shaders | User interface | UI Toolkit performance optimization tips |

© 2024 Unity Technologies 68 of 100 | unity.com

Hide invisible UI elements

You might have UI elements that only appear sporadically in the game (e.g., a health bar that
appears when a character takes damage). If your invisible UI element is active, it might still be
using draw calls. Explicitly disable any invisible UI components and re-enable them as needed.

If you only need to turn off the Canvas’s visibility, disable the Canvas component rather
than the whole GameObject. This can prevent your game from having to rebuild meshes and
vertices when you re-enable it.

Limit GraphicRaycasters and disable Raycast Target

Input events like onscreen touches or clicks require the GraphicRaycaster component.
This simply loops through each input point onscreen and checks if they’re within a UI’s
RectTransform.

Remove the default GraphicRaycaster from the top Canvas in the hierarchy. Instead, add
the GraphicRaycaster exclusively to the individual elements that need to interact (buttons,
scrollrects, and so on).

Disable Reversed Graphics, which is active by default.

In addition, disable Raycast Target on all UI text and images that don’t need it. If the
UI is complex with many elements, all of these small changes can reduce unnecessary
computation.

Disable Raycast Target if possible.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

© 2024 Unity Technologies 69 of 100 | unity.com© 2024 Unity Technologies 69 of 100 | unity.com© 2024 Unity Technologies 69 of 100 | unity.com© 2024 Unity Technologies 69 of 100 | unity.com© 2024 Unity Technologies 69 of 100 | unity.com

| Shaders | User interface | UI Toolkit performance optimization tips |

© 2024 Unity Technologies 69 of 100 | unity.com

Avoid Layout Groups

Layout Groups update inefficiently, so use them sparingly. However, if your content isn’t
dynamic, it’s generally best to avoid using them and use anchors for proportional layouts
instead. Otherwise, create custom code to disable the Layout Group components after they
set up the UI.

If you do need to use Layout Groups (Horizontal, Vertical, Grid) for your dynamic elements,
avoid nesting them to improve performance.

Layout Groups can lower performance, especially when nested.

Avoid large List and Grid views

Large List and Grid views are expensive. If you need to create a large List or Grid view (e.g.,
an inventory screen with hundreds of items), consider reusing a smaller pool of UI elements
rather than creating a UI element for every item. Check out this sample GitHub project to see
this in action.

Avoid numerous overlaid elements

Layering lots of UI elements (e.g., cards stacked in a card battle game) creates overdraw.
Customize your code to merge layered elements at runtime into fewer elements and batches.

Use multiple resolutions and aspect ratios

With mobile devices now using very different resolutions and screen sizes, create alternate
versions of the UI to provide the best experience on each device.

Use the Device Simulator to preview the UI across a wide range of supported devices. You can
also create virtual devices in XCode and Android Studio.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.ugui@3.0/manual/UIAutoLayout.html
https://github.com/boonyifei/ScrollList
https://docs.unity3d.com/Packages/com.unity.ugui@3.0/manual/HOWTO-UIMultiResolution.html
https://docs.unity3d.com/Packages/com.unity.ugui@3.0/manual/HOWTO-UIMultiResolution.html
https://developer.apple.com/library/archive/documentation/IDEs/Conceptual/iOS_Simulator_Guide/GettingStartedwithiOSSimulator/GettingStartedwithiOSSimulator.html#//apple_ref/doc/uid/TP40012848-CH5-SW10
https://developer.android.com/studio/run/managing-avds

© 2024 Unity Technologies 70 of 100 | unity.com© 2024 Unity Technologies 70 of 100 | unity.com© 2024 Unity Technologies 70 of 100 | unity.com© 2024 Unity Technologies 70 of 100 | unity.com© 2024 Unity Technologies 70 of 100 | unity.com

| Shaders | User interface | UI Toolkit performance optimization tips |

© 2024 Unity Technologies 70 of 100 | unity.com

Preview a variety of screen formats using the Device Simulator.

When using a fullscreen UI, hide everything else

If your pause or start screen covers everything else in the scene, disable the camera that is
rendering the 3D scene. Similarly, disable any background Canvas elements hidden behind the
top Canvas.

Consider lowering the Application.targetFrameRate during a fullscreen UI, since you should
not need to update at 60 fps.

Assign the Camera to World Space and Camera Space Canvases

Leaving the Event or Render Camera field blank forces Unity to fill in Camera.main, which is
unnecessarily expensive.

Consider using Screen Space – Overlay for your Canvas RenderMode if possible, as that does
not require a camera.

When using World Space Render Mode, make sure to fill in the Event Camera.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

© 2024 Unity Technologies 71 of 100 | unity.com

UI Toolkit performance
optimization tips

UI Toolkit offers improved performance over Unity UI, is tailored for maximum performance
and reusability, and provides workflows and authoring tools inspired by standard web
technologies. One of its key benefits is that it uses a highly optimized rendering pipeline that is
specifically designed for UI elements.

Here are some general recommendations for optimizing performance of your UI with UI Toolkit:

Use efficient layouts
Efficient layouts refer to using layout groups provided by UI Toolkit, such as Flexbox, instead
of manually positioning and resizing UI elements. Layout groups handle the layout calculations
automatically, which can significantly improve performance. They ensure that UI elements are
arranged and sized correctly based on the specified layout rules. By utilizing efficient layouts,
you avoid the overhead of manual layout calculations and achieve consistent and optimized UI
rendering.

Avoid expensive operations in Update
Minimize the amount of work performed in Update methods, especially heavy operations like
UI element creation, manipulation, or calculation. Perform these operations sparingly or during
initialization when possible, since the update method is called once per frame.

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/UIE-LayoutEngine.html

© 2024 Unity Technologies 72 of 100 | unity.com© 2024 Unity Technologies 72 of 100 | unity.com© 2024 Unity Technologies 72 of 100 | unity.com© 2024 Unity Technologies 72 of 100 | unity.com© 2024 Unity Technologies 72 of 100 | unity.com

| User interface | UI Toolkit performance optimization tips | Audio |

© 2024 Unity Technologies 72 of 100 | unity.com

Optimize event handling
Be mindful of event subscriptions and unregister them when no longer needed. Excessive
event handling can impact performance, so ensure you only subscribe to events that are
necessary.

Optimize style sheets
Be mindful of the number of style classes and selectors used in your style sheets. Large style
sheets with numerous rules can impact performance. Keep your style sheets lean and avoid
unnecessary complexity.

Profile and optimize
Use Unity’s profiling tools to identify performance bottlenecks in your UI and spot areas that
can be optimized further, such as inefficient layout calculations or excessive redraws.

Test on target platforms
Test your UI performance on target platforms to ensure optimal performance across different
devices. Performance can vary based on hardware capabilities, so consider the target
platform when optimizing your UI.

Remember, performance optimization is an iterative process. Continuously profile, measure,
and optimize your UI code to ensure it runs smoothly and efficiently.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

© 2024 Unity Technologies 73 of 100 | unity.com

Though audio is not typically a performance
bottleneck, you can still optimize to save
memory.

Optimize the Import Settings of your AudioClips.

Audio

https://unity.com/releases/lts

© 2024 Unity Technologies 74 of 100 | unity.com© 2024 Unity Technologies 74 of 100 | unity.com© 2024 Unity Technologies 74 of 100 | unity.com© 2024 Unity Technologies 74 of 100 | unity.com© 2024 Unity Technologies 74 of 100 | unity.com

| UI Toolkit performance optimization tips | Audio | Animation |

© 2024 Unity Technologies 74 of 100 | unity.com

Make sound clips mono when possible
If you are using 3D spatial audio, author your sound clips as mono (single channel) or enable
the Force To Mono setting. Otherwise, a multichannel sound used positionally at runtime will
be flattened to a mono source, thus increasing CPU cost and wasting memory.

Use original uncompressed WAV files as your source
assets
If you use any compressed format (such as MP3 or Vorbis), Unity will decompress it, then
recompress it during build time. This results in two lossy passes, degrading the final quality.

Compress the clip and reduce the compression bitrate
Reduce the size of your clips and memory usage with compression:

	— Use Vorbis for most sounds (or MP3 for sounds not intended to loop).

	— Use ADPCM for short, frequently used sounds (e.g., footsteps, gunshots). This shrinks
the files compared to uncompressed PCM, but is quick to decode during playback.

Sound effects on mobile devices should be 22,050 Hz at most. Using lower settings usually
has minimal impact on the final quality; your own ears can help you judge for yourself.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

© 2024 Unity Technologies 75 of 100 | unity.com© 2024 Unity Technologies 75 of 100 | unity.com© 2024 Unity Technologies 75 of 100 | unity.com© 2024 Unity Technologies 75 of 100 | unity.com© 2024 Unity Technologies 75 of 100 | unity.com

| UI Toolkit performance optimization tips | Audio | Animation |

© 2024 Unity Technologies 75 of 100 | unity.com

Choose the proper Load Type
The setting varies by clip size, see the following table for more information:

Unload muted AudioSources from memory
When implementing a mute button, don’t simply set the volume to 0. You can Destroy the
AudioSource component to unload it from memory, provided the player does not need to
toggle this on and off very often.

Use the Sample Rate Setting
Set the Sample Rate Setting to Optimize Sample Rate or Override Sample Rate.

For mobile platforms, 22050 Hz should be sufficient. Use 44100Hz (i.e. CD-quality) sparingly.
48000Hz is excessive.

Clip size Example usage Load type settings

Small (< 200
KB)

Noisy sound
effects
(footsteps,
gunshots), UI
sounds

Use Decompress on Load. This incurs a small CPU cost
to decompress a sound into raw 16-bit PCM audio data,
but will be the most performant at runtime.

Or set to Compressed In Memory and set
Compression Format to ADPCM. This offers a
fixed 3.5:1 compression ratio and is inexpensive to
decompress in real-time.

Medium (>=
200 KB)

Dialog, short
music, medium/
non-noisy
sounds effects

Optimal Load Type depends on the project’s priorities.

If reducing memory usage is the priority, select
Compressed In Memory.

If CPU usage is a concern, clips should be set to
Decompress On Load.

Large (>
350-400
KB)

Background
music, ambient
background
noise, long
dialog

Set to Streaming. Streaming has a 200 KB overhead, so
it is only suitable for sufficiently large AudioClips.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

© 2024 Unity Technologies 76 of 100 | unity.com

Animation

The following tips will help you when working with animation in Unity. For a comprehensive
guide through the animation system, download the free e-book The definitive guide to
animation in Unity.

Use generic rather than humanoid
rigs
By default, Unity imports animated models with the generic rig,
but developers often switch to the humanoid rig when animating
a character. Be aware of these issues with rigs:

	— Use a generic rig whenever possible. Humanoid rigs
calculate inverse kinematics and animation retargeting
each frame, even when not in use. Thus, they consume
30–50% more CPU time than their equivalent generic rigs.

	— When importing humanoid animation, use an Avatar Mask
to remove IK Goals or finger animation if you don’t need
them.

	— With Generic Rigs, using root motion is more expensive
than not using it. If your animations don’t use root motion,
do not specify a root bone.

Generic rigs use less CPU time than humanoid rigs.

https://unity.com/releases/lts
https://unity.com/resources/definitive-guide-animation-unity-2022-lts-ebook
https://unity.com/resources/definitive-guide-animation-unity-2022-lts-ebook

© 2024 Unity Technologies 77 of 100 | unity.com© 2024 Unity Technologies 77 of 100 | unity.com© 2024 Unity Technologies 77 of 100 | unity.com© 2024 Unity Technologies 77 of 100 | unity.com© 2024 Unity Technologies 77 of 100 | unity.com

| Audio | Animation | Physics |

© 2024 Unity Technologies 77 of 100 | unity.com

Use alternatives for simple animation
Animators are primarily intended for humanoid characters. However, they are often repurposed
to animate single values (e.g., the alpha channel of a UI element). Avoid overusing Animators,
particularly in conjunction with UI elements, since they come with extra overhead.

The current animation system is optimized for animation blending and more complex setups. It
has temporary buffers used for blending, and there is additional copying of the sampled curve
and other data.

Also, if possible, consider not using the animation system at all. Create easing functions or
use a third-party tweening library where possible (e.g., DOTween). These can achieve very
natural-looking interpolation with mathematical expressions.

Avoid scale curves
Animating scale curves is more expensive than animating translation and rotation curves. To
improve performance, avoid scale animations.

 Note: This does not apply to constant curves (curves that have the same value for the length
of the animation clip). Constant curves are optimized, and these are less expensive than
normal curves.

Update only when visible
Set the animators’s Culling Mode to Based on Renderers, and disable the Skinned Mesh
Renderer’s Update When Offscreen property. This saves Unity from updating animations
when the character is not visible.

Optimize workflow
Other optimizations are possible at the scene level:

	— Use hashes instead of strings to query the Animator.

	— Implement a small AI Layer to control the Animator. You can make it provide simple
callbacks for OnStateChange, OnTransitionBegin, and other events.

	— Use State Tags to easily match your AI state machine to the Unity state machine.

	— Use additional curves to simulate events.

	— Use additional curves to mark up your animations, for example in conjunction with target
matching.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://easings.net
https://assetstore.unity.com/packages/tools/animation/dotween-hotween-v2-27676?
https://docs.unity3d.com/6000.0/Documentation/Manual/class-AnimationClip.html?
https://docs.unity3d.com/6000.0/Documentation/Manual/class-Animator.html?
https://docs.unity3d.com/6000.0/Documentation/Manual/class-SkinnedMeshRenderer.html?
https://docs.unity3d.com/6000.0/Documentation/Manual/class-SkinnedMeshRenderer.html?
https://docs.unity3d.com/6000.0/Documentation/Manual/TargetMatching.html?
https://docs.unity3d.com/6000.0/Documentation/Manual/TargetMatching.html?

© 2024 Unity Technologies 78 of 100 | unity.com© 2024 Unity Technologies 78 of 100 | unity.com© 2024 Unity Technologies 78 of 100 | unity.com© 2024 Unity Technologies 78 of 100 | unity.com© 2024 Unity Technologies 78 of 100 | unity.com

| Audio | Animation | Physics |

© 2024 Unity Technologies 78 of 100 | unity.com

Separate animating hierarchies

Ensure that animating hierarchies do not share a common parent (unless that parent is the
root of the scene). This separation prevents threading issues when writing the result of
animation back to GameObjects, which can cause significant performance penalties.

Minimize binding costs

Be aware of the high costs associated with binding operations in the animation system.
To optimize performance, avoid frequently adding clips, adding or removing GameObjects
and components, and enabling or disabling objects during runtime which generally require
rebinding. All of these operations are computationally expensive.

Avoid using component-based constraints on deep hierarchies

Avoid using component-based constraints on deep hierarchies, such as characters with
complex structures as this can result in poor performance.

Consider performance implications of animation rigging

When using animation rigging, be mindful of the performance overhead introduced by each
constraint. This consideration is important when working with humanoid models. Whenever
possible, utilize the built-in IK (Inverse Kinematics) pass in the Humanoid rig to improve
performance.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

© 2024 Unity Technologies 79 of 100 | unity.com

Physics can create intricate gameplay, but this comes with a performance cost. When you
know these costs, you can tweak the simulation to manage them appropriately. These tips can
help you stay within your target frame rate and create smooth playback with Unity’s built-in
physics (NVIDIA PhysX).

Simplify colliders
Mesh colliders can be expensive. Substitute more complex mesh colliders with primitive or
simplified mesh colliders to approximate the original shape.

Use primitives or simplified meshes for colliders.

Physics

https://unity.com/releases/lts

© 2024 Unity Technologies 80 of 100 | unity.com© 2024 Unity Technologies 80 of 100 | unity.com© 2024 Unity Technologies 80 of 100 | unity.com© 2024 Unity Technologies 80 of 100 | unity.com© 2024 Unity Technologies 80 of 100 | unity.com

| Animation | Physics | XR optimization tips

© 2024 Unity Technologies 80 of 100 | unity.com

Optimize your settings
In the PlayerSettings, check Prebake Collision Meshes whenever possible.

Enable Prebake Collision Meshes

Make sure that you edit your Physics settings (Project Settings > Physics) as well. Simplify
your Layer Collision Matrix wherever possible.

Modify the physics project settings to squeeze out more performance.

Adjust simulation frequency
Physics engines work by running on a fixed time step. To see the fixed rate that your project is
running at, go to Edit > Project Settings > Time.

The Fixed Timestep field defines the time delta used by each physics step. For example, the
default value of 0.02 seconds (20 ms) is equivalent to 50 fps, or 50 Hz.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/class-PlayerSettings.html

© 2024 Unity Technologies 81 of 100 | unity.com© 2024 Unity Technologies 81 of 100 | unity.com© 2024 Unity Technologies 81 of 100 | unity.com© 2024 Unity Technologies 81 of 100 | unity.com© 2024 Unity Technologies 81 of 100 | unity.com

| Animation | Physics | XR optimization tips

© 2024 Unity Technologies 81 of 100 | unity.com

The default Fixed Timestep in the Project Settings is 0.02 seconds (50 frames per second).

Because each frame in Unity takes a variable amount of time, it is not perfectly synced
with the physics simulation. The engine counts up to the next physics time step. If a frame
runs slightly slower or faster, Unity uses the elapsed time to know when to run the physics
simulation at the proper time step.

In the event that a frame takes a long time to prepare, this can lead to performance issues. For
example, if your game experiences a spike (e.g., instantiating many GameObjects or loading
a file from disk), the frame could take 40 ms or more to run. With the default 20 ms Fixed
Timestep, this would cause two physics simulations to run on the following frame in order to
“catch up” with the variable time step.

Extra physics simulations, in turn, add more time to process the frame. On lower-end
platforms, this potentially leads to a downward spiral of performance.

A subsequent frame taking longer to prepare makes the backlog of physics simulations longer
as well. This leads to even slower frames and even more simulations to run per frame. The
result is worse and worse performance.

Eventually the time between physics updates could exceed the Maximum Allowed Timestep.
After this cutoff, Unity starts dropping physics updates, and the game stutters.

To avoid performance issues with physics:

	— Reduce the simulation frequency. For lower-end platforms, increase the Fixed Timestep
to slightly more than your target frame rate. For example, use 0.035 seconds for 30ps on
mobile. This could help prevent that downward performance spiral.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

© 2024 Unity Technologies 82 of 100 | unity.com© 2024 Unity Technologies 82 of 100 | unity.com© 2024 Unity Technologies 82 of 100 | unity.com© 2024 Unity Technologies 82 of 100 | unity.com© 2024 Unity Technologies 82 of 100 | unity.com

| Animation | Physics | XR optimization tips

© 2024 Unity Technologies 82 of 100 | unity.com

	— Decrease the Maximum Allowed Timestep. Using a smaller value (like 0.1 s) sacrifices
some physics simulation accuracy, but also limits how many physics updates can happen
in one frame. Experiment with values to find something that works for your project’s
requirements.

	— Simulate the physics step manually if necessary by choosing the SimulationMode during
the Update phase of the frame. This allows you to take control when to run the physics
step. Pass Time.deltaTime to Physics.Simulate in order to keep the physics in sync with
the simulation time.

This approach can cause instabilities in the physics simulation in scenes with complex physics
or highly variable frame times, so use it with caution.

Profiling a scene in Unity with manual simulation

Modify CookingOptions for MeshColliders
Meshes used in physics go through a process called cooking. This prepares the mesh so that
it can work with physics queries like raycasts, contacts, and so on.

A MeshCollider has several CookingOptions to help you validate the mesh for physics. If you
are certain that your mesh does not need these checks, you can disable them to speed up
your cook time.

In the CookingOptions for each MeshCollider, simply uncheck the EnableMeshCleaning,
WeldColocatedVertices, and CookForFasterSimulation. These options are valuable for
procedurally generated meshes at runtime, but can be disabled if your meshes already have
the proper triangles.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/SimulationMode.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/MeshColliderCookingOptions.html?

© 2024 Unity Technologies 83 of 100 | unity.com© 2024 Unity Technologies 83 of 100 | unity.com© 2024 Unity Technologies 83 of 100 | unity.com© 2024 Unity Technologies 83 of 100 | unity.com© 2024 Unity Technologies 83 of 100 | unity.com

| Animation | Physics | XR optimization tips

© 2024 Unity Technologies 83 of 100 | unity.com

Also, if you are targeting PC, make sure you keep Use Fast Midphase enabled. This switches
to a faster algorithm from PhysX 4.1 during the mid-phase of the simulation (which helps
narrow down a small set of potentially intersecting triangles for physics queries).

Cooking options for a mesh

Use Physics.BakeMesh
If you are generating meshes procedurally during gameplay, you can create a Mesh Collider
at runtime. Adding a MeshCollider component directly to the mesh, however, cooks/bakes the
physics on the main thread. This can consume significant CPU time.

Use Physics.BakeMesh to prepare a mesh for use with a MeshCollider and save the
baked data with the mesh itself. A new MeshCollider referencing this mesh will reuse this
prebaked data (rather than baking the mesh again). This can help reduce Scene load time or
instantiation time later.

To optimize performance, you can offload mesh cooking to another thread with the C# job
system. Refer to this example for details on how to bake meshes across multiple threads.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Physics.BakeMesh.html
https://docs.unity3d.com/6000.0/Documentation/Manual/JobSystemOverview.html
https://docs.unity3d.com/6000.0/Documentation/Manual/JobSystemOverview.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Physics.BakeMesh.html

© 2024 Unity Technologies 84 of 100 | unity.com© 2024 Unity Technologies 84 of 100 | unity.com© 2024 Unity Technologies 84 of 100 | unity.com© 2024 Unity Technologies 84 of 100 | unity.com© 2024 Unity Technologies 84 of 100 | unity.com

| Animation | Physics | XR optimization tips

© 2024 Unity Technologies 84 of 100 | unity.com

BakeMeshJob in the Profiler

Use Box Pruning for large scenes
The Unity physics engine runs in two steps:

	— The broad phase, which collects potential collisions using a sweep and prune algorithm

	— The narrow phase, where the engine actually computes the collisions

The broad phase default setting of Sweep and Prune BroadPhase (Edit > Project Settings >
Physics > BroadPhase Type) can generate false positives for worlds that are generally flat
and have many colliders.

If your scene is large and mostly flat, avoid this issue and switch to Automatic Box Pruning or
Multibox Pruning Broadphase. These options divide the world into a grid, where each grid cell
performs sweep-and-prune.

Multibox Pruning Broadphase allows you to specify the world boundaries and the number of
grid cells manually, while Automatic Box Pruning calculates that for you.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://en.wikipedia.org/wiki/Sweep_and_prune

© 2024 Unity Technologies 85 of 100 | unity.com© 2024 Unity Technologies 85 of 100 | unity.com© 2024 Unity Technologies 85 of 100 | unity.com© 2024 Unity Technologies 85 of 100 | unity.com© 2024 Unity Technologies 85 of 100 | unity.com

| Animation | Physics | XR optimization tips

© 2024 Unity Technologies 85 of 100 | unity.com

Broadphase Type in the Physics options

Modify solver iterations
If you want to simulate a specific physics body more accurately, increase its Rigidbody.
solverIterations.

Override the Default Solver Iterations per Rigidbody.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Rigidbody-solverIterations.html?
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Rigidbody-solverIterations.html?
https://unity.com/products/cloud-content-delivery

© 2024 Unity Technologies 86 of 100 | unity.com© 2024 Unity Technologies 86 of 100 | unity.com© 2024 Unity Technologies 86 of 100 | unity.com© 2024 Unity Technologies 86 of 100 | unity.com© 2024 Unity Technologies 86 of 100 | unity.com

| Animation | Physics | XR optimization tips

© 2024 Unity Technologies 86 of 100 | unity.com

This overrides the Physics.defaultSolverIterations, which can also be found in Edit > Project
Settings > Physics > Default Solver Iterations.

To optimize your physics simulations, set a relatively low value in the project’s
defaultSolveIterations. Then apply higher custom Rigidbody.solverIterations values to the
individual instances that need more detail.

Disable automatic transform syncing
By default, Unity does not automatically synchronize changes to Transforms with the physics
engine. Instead, it waits until the next physics update or until you manually call Physics.
SyncTransforms. When this is enabled, any Rigidbody or Collider on that Transform or its
children automatically sync with the physics engine.

When to manually sync

When autoSyncTransforms is disabled, Unity only synchronizes transformations before the
physics simulation step in FixedUpdate or when explicitly requested through Physics.Simulate.
You might need to perform additional syncs if you use APIs that read directly from the physics
engine between Transform changes and the physics update. Examples include accessing
Rigidbody.position or performing Physics.Raycast.	

Performance best practice

Although autoSyncTransforms ensures up-to-date physics queries, it incurs a performance
cost. Each physics-related API call forces a sync, which can degrade performance, especially
with multiple successive queries. Follow these best practices:

	— Disable autoSyncTransforms unless necessary: Only enable it if precise, continuous
syncing is crucial for your game mechanics.

	— Use manual syncing: For better performance, manually synchronize Transforms with
Physics.SyncTransforms() before calls that require the latest Transform data. This
approach is more efficient than enabling autoSyncTransforms globally.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Physics.SyncTransforms.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Physics.SyncTransforms.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Rigidbody.html?
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Collider.html?
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Transform.html?

© 2024 Unity Technologies 87 of 100 | unity.com© 2024 Unity Technologies 87 of 100 | unity.com© 2024 Unity Technologies 87 of 100 | unity.com© 2024 Unity Technologies 87 of 100 | unity.com© 2024 Unity Technologies 87 of 100 | unity.com

| Animation | Physics | XR optimization tips

© 2024 Unity Technologies 87 of 100 | unity.com

Profiling a scene in Unity with Auto Sync Transform disabled

Use Contact Arrays
Contact Arrays gives you a method where collision data (contacts) is stored and managed in
an array format. This means that every collision event generates an array of contact points,
which can be accessed and processed. Being an array it provides a contiguous block of
memory, which speeds up access times when processing collision data and sets it up for
batch processing and can be combined with the C# Job System in performance-critical use
cases.

Reuse Collision Callbacks
Contact arrays are generally significantly faster and so the general recommendation is to use
those rather than reusing collision callbacks, however consider the following if you do have a
specific use case for it.

The callbacks MonoBehaviour.OnCollisionEnter, MonoBehaviour.OnCollisionStay and
MonoBehaviour.OnCollisionExit all take a collision instance as a parameter. This collision
instance is allocated on the managed heap and must be garbage collected.

To reduce the amount of garbage generated, enable Physics.reuseCollisionCallbacks (also
found in Projects Settings > Physics > Reuse Collision Callbacks). With this active, Unity only
assigns a single collision pair instance to each callback. This reduces waste for the garbage

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Physics.ContactEvent.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/MonoBehaviour.OnCollisionEnter.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/MonoBehaviour.OnCollisionStay.html?
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/MonoBehaviour.OnCollisionExit.html?
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Physics-reuseCollisionCallbacks.html?

© 2024 Unity Technologies 88 of 100 | unity.com© 2024 Unity Technologies 88 of 100 | unity.com© 2024 Unity Technologies 88 of 100 | unity.com© 2024 Unity Technologies 88 of 100 | unity.com© 2024 Unity Technologies 88 of 100 | unity.com

| Animation | Physics | XR optimization tips

© 2024 Unity Technologies 88 of 100 | unity.com

collector and improves performance.

The general recommendation is to always enable Reuse Collision Callbacks for performance
benefits. You should only disable this feature for legacy projects where the code relies on
individual Collision class instances, making it impractical to store individual fields.

In the Unity Console, there is a single collision instance on Collision Entered and Collision Stay.

Move static colliders
Static colliders are GameObjects with a Collider component but without a Rigidbody.

Note that you can move a static collider, contrary to the term “static.” To do so, simply modify
the position of the physics body. Accumulate the positional changes and sync before the
physics update. You don’t need to add a Rigidbody component to the static collider just to
move it.

However, if you want the static collider to interact with other physics bodies in a more complex
way, give it a kinematic Rigidbody. Use Rigidbody.position and Rigidbody.rotation to move it
instead of accessing the Transform component. This guarantees more predictable behavior
from the physics engine.

Note: If an individual Static Collider 2D needs to be moved or reconfigured at runtime,
then add a Rigidbody 2D component and set it to the Static Body Type, as it is faster to
simulate the Collider 2D when it has its own Rigidbody 2D. If a group of Collider 2Ds needs
to be moved or reconfigured at runtime, it is faster to have them all be children of the single
hidden parent Rigidbody 2D than to move each GameObject individually.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Rigidbody-isKinematic.html?
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Rigidbody-position.html?
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Rigidbody-rotation.html?

© 2024 Unity Technologies 89 of 100 | unity.com© 2024 Unity Technologies 89 of 100 | unity.com© 2024 Unity Technologies 89 of 100 | unity.com© 2024 Unity Technologies 89 of 100 | unity.com© 2024 Unity Technologies 89 of 100 | unity.com

| Animation | Physics | XR optimization tips

© 2024 Unity Technologies 89 of 100 | unity.com

Use non-allocating queries
To detect and collect colliders in 3D projects within a certain distance and in a certain
direction, use raycasts and other physics queries like BoxCast. Note that

Physics queries that return multiple colliders as an array, like OverlapSphere or OverlapBox,
need to allocate those objects on the managed heap. This means that the garbage collector
eventually needs to collect the allocated objects, which can decrease performance if it
happens at the wrong time.

To reduce this overhead, use the NonAlloc versions of those queries. For example,
if you are using OverlapSphere to collect all potential colliders around a point, use
OverlapSphereNonAlloc instead.

This allows you to pass in an array of colliders (the results parameter) to act as a buffer.
The NonAlloc method works without generating garbage. Otherwise, it functions like the
corresponding allocating method.

Note that you need to define a results buffer of sufficient size when using a NonAlloc method.
The buffer does not grow if it runs out of space.

2D Physics

Note that the above advice does not apply to 2D physics queries, because in Unity’s 2D
physics system, methods do not have a “NonAlloc” suffix. Instead, all 2D physics methods,
including those that return multiple results, provide overloads that accept arrays or lists. For
instance, while the 3D physics system has methods like RaycastNonAlloc, the 2D equivalent
simply uses an overloaded version of Raycast that can take an array or List<T> as a
parameter, such as:

var results = new List<RaycastHit2D>();
int hitCount = Physics2D.Raycast(origin, direction, contactFilter,
results);

By using overloads, you can perform non-allocating queries in the 2D physics system without
needing specialized NonAlloc methods.

Batch queries for ray casting
You can run raycast queries with Physics.Raycast. However, if you have a large number of
raycast operations (e.g., calculating line of sight for 10,000 agents), this may take a significant
amount of CPU time.

Use RaycastCommand to batch the query using the C# Job System. This offloads the work
from the main thread so that the raycasts can happen asynchronously and in parallel.

See a usage example at the RaycastCommands documentation page.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Physics.BoxCast.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Physics.OverlapSphere.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Physics.OverlapBox.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Physics.OverlapSphereNonAlloc.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Physics.Raycast.html?
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/RaycastCommand.html?
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/RaycastCommand.html?

© 2024 Unity Technologies 90 of 100 | unity.com© 2024 Unity Technologies 90 of 100 | unity.com© 2024 Unity Technologies 90 of 100 | unity.com© 2024 Unity Technologies 90 of 100 | unity.com© 2024 Unity Technologies 90 of 100 | unity.com

| Animation | Physics | XR optimization tips

© 2024 Unity Technologies 90 of 100 | unity.com

Visualize with the Physics Debugger
Use the Physics Debug window (Window > Analysis > Physics Debugger) to help
troubleshoot any problem colliders or discrepancies. This shows a color-coded indicator of the
GameObjects that can collide with one another.

The Physics Debugger helps you visualize how your physics objects can interact with one another.

For more information, see Physics Debugger documentation.

Workflow and collaboration
Why use version control?

Building an application in Unity is a demanding endeavor that often involves many developers.
Make sure that your project is set up optimally for your team to collaborate.

A version control system (VCS) allows you to keep a historical record of your entire project. It
brings organization to your work and enables teams to iterate efficiently.

Project files are stored in a shared database called a repository, or “repo.” You backup your
project at regular intervals to the repo, and if something goes wrong, you can revert back to
an earlier version of the project.

With a VCS, you can make multiple individual changes and commit them as a single group for
versioning. This commit sits as a point on the timeline of your project, so that if you need to
revert back to a previous version, everything from that commit is undone and restored to the
state it was at the time. You can review and modify each change grouped within a commit or
undo the commit entirely.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/PhysicsDebugVisualization.html

© 2024 Unity Technologies 91 of 100 | unity.com© 2024 Unity Technologies 91 of 100 | unity.com© 2024 Unity Technologies 91 of 100 | unity.com© 2024 Unity Technologies 91 of 100 | unity.com© 2024 Unity Technologies 91 of 100 | unity.com

| Animation | Physics | XR optimization tips

© 2024 Unity Technologies 91 of 100 | unity.com

With access to the project’s entire history, it’s easier to identify which changes introduced
bugs, restore previously removed features, and easily document changes between your game
or product releases.

What’s more, because version control is typically stored in the cloud or on a distributed
server, it supports your development team’s collaboration from wherever they’re working – an
increasingly important benefit as remote work becomes commonplace.

Unity Version Control

Unity Version Control (UVCS) is a flexible version control system with unique interfaces to
support programmers and artists alike. It excels at handling large repos and binary files, and
as both a file-based and changeset-based solution, it gives you the capability to download
only the specific files you’re working on, rather than the entire project build.

There are three ways to access UVCS: via multiple applications and repositories through the
UVCS desktop client, by adding it to your projects through the Unity Hub, or accessing the
repository on Unity cloud via your web browser.

UVCS allows you to:

	— Work knowing that your art assets are securely backed up.

	— Track ownership of every asset.

	— Roll back to previous iterations of an asset.

	— Drive automated processes on a single central repository.

	— Create branches quickly and securely over multiple platforms.

Additionally, UVCS helps you centralize your development with excellent visualization tools.
Artists especially will appreciate the user-friendly workflows that encourage tighter integration
between development and art teams with the Gluon application, which makes it easier to
see and manage just the files they need without dealing with the entire project repository
complexity. Besides offering a simplified workflow it also offers tooling that makes it easy to
see visual differences in asset versions and easier to contribute to a unified version control
environment.

To help with version control merges, make sure your Editor Settings have Asset Serialization
Mode set to Force Text.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity.com/ugs/en-us/manual/devops/manual/unity-version-control
https://docs.unity.com/ugs/en-us/manual/devops/manual/version-control-desktop-client
https://learn.unity.com/tutorial/how-to-use-the-unity-hub?courseId=6401bbfcedbc2a22aaebd59b
https://docs.plasticscm.com/gluon/plastic-scm-version-control-gluon-guide

© 2024 Unity Technologies 92 of 100 | unity.com© 2024 Unity Technologies 92 of 100 | unity.com© 2024 Unity Technologies 92 of 100 | unity.com© 2024 Unity Technologies 92 of 100 | unity.com© 2024 Unity Technologies 92 of 100 | unity.com

| Animation | Physics | XR optimization tips

© 2024 Unity Technologies 92 of 100 | unity.com

If you’re using an external version control system (such as Git) in the Version Control settings,
verify that the Mode is set to Visible Meta Files.

Unity also has a built-in YAML (a human-readable, data-serialization language) tool specifically
used for merging scenes and prefabs. For more information, see Smart Merge in the Unity
documentation.

Learn more about Unity VCS, and general version control and project organization best
practices, in the e-book Version control and project organization best practices for game
developers.

Break up large scenes

Large, single Unity scenes do not lend themselves well to collaboration. Divide your levels into
multiple smaller scenes so artists and designers can collaborate effectively on a single level
while minimizing the risk of conflicts.

Note that, at runtime, your project can load scenes additively using SceneManager.
LoadSceneAsync passing the LoadSceneMode.Additive parameter mode.

Remove unused resources

Watch out for any unused assets that come bundled with third-party plug-ins and libraries.
Many include embedded test assets and scripts, which will become part of your build if you
don’t remove them. Strip out any unneeded resources left over from prototyping.

All of the optimization tips demonstrated in this e-book will benefit your game regardless of
your platform. This next section focuses on specific optimization tips for XR and web.

Platform-specific tips for Unity Web Builds
Optimizing Unity Web builds requires a unique approach due to the inherent limitations
and challenges of running applications within a web browser. Web builds must balance
performance, load times, and compatibility across a wide range of devices and browsers.
In this section, we’ll explore key strategies and best practices specifically tailored to Unity
Web projects. From asset management and memory optimization to reducing build size and
enhancing user experience, these tips will help you create high-performance web applications
that deliver seamless experiences across different environments.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/SmartMerge.html?

© 2024 Unity Technologies 93 of 100 | unity.com© 2024 Unity Technologies 93 of 100 | unity.com© 2024 Unity Technologies 93 of 100 | unity.com© 2024 Unity Technologies 93 of 100 | unity.com© 2024 Unity Technologies 93 of 100 | unity.com

| Animation | Physics | XR optimization tips

© 2024 Unity Technologies 93 of 100 | unity.com

Framerate

	— Keep Application.targetFrameRate at the default project setting value of -1 for Unity
Web builds. Keeping targetFrameRate to -1 instructs the browser to tie frame rate to the
browser’s “animation rate”, i.e., it provides you with the fastest possible rendering rate,
which is typically the same as the native refresh rate of the display, at least in the case
of Firefox and Chrome. However, in Safari, the refresh rate is always capped at 60 fps.

	— If you have changed default settings in your project, you can also create a new C# script
or open an existing script where you want to set the target frame rate. Typically, this
would be in a script that initializes your game or in a central game manager script.

Publishing settings for Unity Web

Compression

Compression significantly reduces the size of the files that need to be downloaded by the
user’s browser. Smaller files result in a smaller, faster download which also consumes less
bandwidth.

The following compression methods are available.

Brotli: Provides a higher compression ratio compared to gzip, resulting in smaller file sizes and
faster load times; supported by modern browsers, and requires a web site to be served from a
secure https:// URL or from a http://localhost/ testing URL

Gzip: Widely supported and still effective; use this option if content is being served over an
insecure http:// server, hosted on a web server that has not yet been configured to serve
Brotli-compressed content, or if you’re using more complex CDN load balancing or caching
infrastructure that are not yet compatible with Brotli

Uncompressed: Generally not recommended for production due to the significantly larger
file sizes and slower load times; deploy with this setting only if the web server has been only
configured to use an on-the-fly compression cache and does not support pre-compressed
Brotli or Gzip content.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
http://localhost/

© 2024 Unity Technologies 94 of 100 | unity.com© 2024 Unity Technologies 94 of 100 | unity.com© 2024 Unity Technologies 94 of 100 | unity.com© 2024 Unity Technologies 94 of 100 | unity.com© 2024 Unity Technologies 94 of 100 | unity.com

| Animation | Physics | XR optimization tips

© 2024 Unity Technologies 94 of 100 | unity.com

Brotli is generally the best compression method when publishing a Unity Web build due to its
high compression ratio, browser support and performance.

Selecting Brotli within the publishing settings

It’s recommended that the Decompression Fallback setting is set to Disabled to ensure fast
site startup times; additionally, the web server that is hosting the page should be configured
to serve pre-compressed Unity content.

Having Decompression Fallback enabled is harmful for battery usage for mobile browsers,
and slows down game startup times. Follow the web server configuration guidelines on this
documentation page.

Strip engine code

Another setting to check within the player settings is the Enable Strip Engine Code in the
Player settings > Other Settings panel, to ensure an efficient build.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/Manual/webgl-server-configuration-code-samples.html
https://docs.unity3d.com/Manual/webgl-server-configuration-code-samples.html

© 2024 Unity Technologies 95 of 100 | unity.com© 2024 Unity Technologies 95 of 100 | unity.com© 2024 Unity Technologies 95 of 100 | unity.com© 2024 Unity Technologies 95 of 100 | unity.com© 2024 Unity Technologies 95 of 100 | unity.com

| Animation | Physics | XR optimization tips

© 2024 Unity Technologies 95 of 100 | unity.com

Enable Strip Engine Code

Enabling Strip Engine Code is a recommended practice to ensure an efficient build, particularly
for Unity Web projects. This feature removes unused engine code, which can significantly
reduce the size of the final build, leading to faster load times and better performance.

Choose “None” in the Enable Exceptions setting

Exception handling requires additional code to be included in the build. By disabling
exceptions, you reduce the runtime checks and exception handling code. If your project does
not use exception handling as control flow, but all exceptions can be treated to terminate
execution, then disabling exception handling support can result in code size savings.

Alternatively, if your application does require exception handling support, consider enabling
WebAssembly 2023, as it optimizes the code size for exception handling in general.

In the Player Settings window under the Unity Web Build tab, expand Publishing Settings,
and set Enable Exceptions to None if you don’t need exceptions in your build.

Setting Enable Exceptions to none

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

© 2024 Unity Technologies 96 of 100 | unity.com© 2024 Unity Technologies 96 of 100 | unity.com© 2024 Unity Technologies 96 of 100 | unity.com© 2024 Unity Technologies 96 of 100 | unity.com© 2024 Unity Technologies 96 of 100 | unity.com

| Animation | Physics | XR optimization tips

© 2024 Unity Technologies 96 of 100 | unity.com

Target WebAssembly 2023 feature set

If your game can afford to target Firefox >= 89, Chrome >= 91 and Safari >= 16.4, enable the
WebAssembly 2023 feature set to shrink down code size.

WebAssembly 2023 enables JS BigInt, Bulk Memory Operations, Non-trapping float-to-
int conversions, Sign-extension Operators and Fixed-width SIMD. See the WebAssembly
Roadmap page to examine which browser versions support which WebAssembly features:
https://webassembly.org/features/.

Code Optimization settings

Set Code Optimization:Disk Size with LTO in Project Build Platform Settings for final release
builds (LTO builds can take a very long time to produce), or Code Optimization: Disk Size for
code size optimized builds when still developing.

Profiling Unity Web Builds
In addition to using Unity’s suite of profiling tools, you can leverage tools like Chrome DevTools
and Firefox Profiler to profile and analyze performance.

Chrome DevTools

Chrome DevTools is a comprehensive set of web development tools built into the Google
Chrome browser. It offers features for profiling performance, debugging JavaScript, analyzing
network activity, and inspecting rendering. Here are the basic steps for activating Chrome
DevTools:

1.	 Press F12 or Ctrl+Shift+I (Windows/Linux) or Cmd+Option+I (Mac) to open Chrome
DevTools. You can also right-click on the page and select Inspect.

2.	 Go to the Performance tab. Click the Record button and interact with your Unity Web
game to capture performance data. Click Stop to end the recording and analyze the
captured data, focusing on frame rate, CPU usage, and rendering performance.

3.	 Navigate to the Network tab and reload your Unity Web game to capture all network
requests. Examine the timeline, request details, and loading times to identify any
network-related performance bottlenecks.

4.	 Use the Sources tab to set breakpoints in your JavaScript code to pause execution and
inspect variables. Use the call stack and scope information to debug and optimize your
code.

5.	 Use the Console tab to log Unity Web states and debug rendering issues. Utilize Unity
Web-specific tools and extensions, such as Unity Web Insight or Unity Web Debugging
for deeper analysis.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://webassembly.org/features/
https://profiler.firefox.com/

© 2024 Unity Technologies 97 of 100 | unity.com

XR optimization tips

This section covers optimization tips for VR, AR, and MR applications built with Unity
(collectively known as XR). Many of these techniques are mentioned in other parts of this
guide because they apply to mobile devices generally but they’re collected here as well for
readers focusing exclusively on XR apps.

Try these techniques to help your XR applications run efficiently, particularly for VR, as these
experiences demand high performance and low latency to maintain immersion and prevent
motion sickness. High-resolution, 3D-rendered environments and responsive interactions
require optimization to ensure smooth experiences that are also physically comfortable.

For a comprehensive guide on developing XR apps in Unity, download the e-book Create
virtual and mixed reality experiences in Unity.

Render Mode
The correct Render Mode setting will make a big difference to the performance of a VR
game. If you’re using Unity’s OpenXR plugin then, within the Project Settings > XR Plugin-
management > plugin provider, there is a menu option for Render Mode. From the drop down
select Single Pass Instanced. This mode renders both eyes in a single pass using instancing.
The scene is rendered once and the shaders are run for both eyes simultaneously.

https://unity.com/releases/lts
https://unity.com/resources/create-virtual-mixed-reality-experiences-unity
https://unity.com/resources/create-virtual-mixed-reality-experiences-unity
https://docs.unity3d.com/Packages/com.unity.xr.openxr@1.12/manual/index.html

© 2024 Unity Technologies 98 of 100 | unity.com© 2024 Unity Technologies 98 of 100 | unity.com© 2024 Unity Technologies 98 of 100 | unity.com© 2024 Unity Technologies 98 of 100 | unity.com© 2024 Unity Technologies 98 of 100 | unity.com

| Animation | Physics | XR optimization tips

© 2024 Unity Technologies 98 of 100 | unity.com

Select Single Pass Instanced as the render mode when developing XR applications.

Foveated rendering
Unity 6 integrates Foveated rendering with support for Oculus XR and OpenXR including
support for PlayStation VR2. Foveated rendering is an optimization technique for VR that
leverages the human eye’s tendency to focus on a small area at a time. By rendering the
focal area in high resolution and the peripheral areas in lower resolution, it reduces the GPU
workload significantly. Implementing foveated rendering can enhance performance, allowing
for higher frame rates and improved visual quality where it matters most.

Foveated rendering, showing the focal area using high resolution

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/xr-foveated-rendering.html

© 2024 Unity Technologies 99 of 100 | unity.com© 2024 Unity Technologies 99 of 100 | unity.com© 2024 Unity Technologies 99 of 100 | unity.com© 2024 Unity Technologies 99 of 100 | unity.com© 2024 Unity Technologies 99 of 100 | unity.com

| Animation | Physics | XR optimization tips

© 2024 Unity Technologies 99 of 100 | unity.com

Utilize the XR Interaction Toolkit
The XR Interaction Toolkit in Unity is an excellent choice for optimized input handling in XR
projects. It provides a set of pre-built components and interaction systems designed to work
efficiently with VR and AR hardware. By leveraging this toolkit, developers can:

Standardize interactions: Use built-in interaction patterns to reduce custom code and ensure
consistency.

Use event-driven architecture: Utilize event-driven input handling to minimize polling and
improve performance.

Increase ease of use: Simplify the development process with ready-to-use components,
leading to faster iteration and optimization.

Overall, the XR Interaction Toolkit helps streamline and optimize input handling, enhancing
responsiveness and user experience in XR applications.

By implementing these strategies, you can ensure smooth and responsive input handling,
enhancing the overall user experience in your XR applications.

XR Interaction Toolkit sample scene

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.0/manual/index.html

© 2024 Unity Technologies 100 of 100 | unity.com© 2024 Unity Technologies 100 of 100 | unity.com© 2024 Unity Technologies 100 of 100 | unity.com© 2024 Unity Technologies 100 of 100 | unity.com© 2024 Unity Technologies 100 of 100 | unity.com

| Animation | Physics | XR optimization tips

© 2024 Unity Technologies 100 of 100 | unity.com

Performance testing for XR optimization
Performance testing is essential for ensuring your XR application delivers a smooth and
immersive experience.

XR-specific profilers:

	— Oculus Performance Head-Up Display (HUD): Real-time performance metrics

	— SteamVR Performance Tool: Analyze VR application performance

Resources for advanced developers and artists

You can download many more e-books for advanced Unity developers and creators from the
Unity best practices hub. Choose from over 30 guides, created by industry experts, and Unity
engineers and technical artists, that provide best practices for game development and will
help you develop efficiently with Unity’s toolsets and systems.

You’ll also find tips, best practices, and news on the Unity Blog and Unity community forums,
as well as through Unity Learn and the #unitytips hashtag.

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/how-to
https://unity.com/how-to
https://unity.com/blog
https://forum.unity.com/
https://learn.unity.com/

unity.com

https://unity.com/

	_t9tcni3gt6bv
	_v7dx26k4gk60
	_vk00eokknxrv
	_b6x54glinov5
	_fasu071usr9z
	_5x9vvvgtyygd
	_p3yn7jx3umvm
	_y39hferwzo35
	_vukd1yeo73q6
	_cnwdwmxbmx4
	_3p4k93b3tcsu
	_tf133g37z7zb
	_5l6g5toucr3r
	_it3amrhp8d3k
	_67e871vhqld6
	_ntmv50vg9s7p
	_7mkv338ooner
	_obukg5iamqt1
	_s8efr5v8i7rm
	_4q95nvmx42hz
	_9d8zjy6vlkg3
	_j9x974oeu27t
	_er89ar8b66db
	_afn1x2rqoli5
	_at50rmjv036j
	_a9md69sylqjd
	_qkmnc7ba81nk
	_v6u3ivgfw7kf
	_tibk9jtw4r4w
	_npl9qaobl80o
	_4tzmwlq4bqp2
	_ffkywkuss2sy
	_95pq5fo9dza1
	_7uhaacav43z3
	_8fv4wtrzc7f9
	_pm9tuyh2xlvf
	_iket0k8plqxc
	_pwfvo2vsz9pv
	_o2mod055unhe
	_gjb4t6yu0ild
	_z3zpgf18qqet
	_sxv9anpiu1c3
	_gag9uzfwxjpm
	_oaau7nz0np3q
	_ecan3byhe0mr
	_yiz6vequ9wmk
	_8152tm6qtxfq
	_5nf12im5331w
	_h798j8bzoqqd
	_ctz5r4h33um9
	_q7859hn45xsk
	_glbnqzntuuw5
	_qgyh7zkk55gf
	_dnni8tdvh1ph
	_vbxupzjluum9
	_d7u05dcq4yyn
	_ejm3qmj26xon
	_i90r9ek3txk4
	_xtfbgjqhs6z2
	_40mckq4ma7fe
	_r0hpjryjc66r
	zihj8hxw2rws
	_klj27yqyunnf
	_1zhigjzefaoc
	_e55wuxcsjt4h
	_le7pw2o84uj4
	_lge9cbamt1bl
	_run9l946e3yq
	_axgne8soukuc
	_rdvc3e7unlsr
	_bthej8kielbw
	_2jerl97co49n
	_v85ymcgz6rlo
	_xzdpaihy2q4
	_8yh06qy81eb0
	_92yvebc2ua61
	_30id3u5brvja
	_cp1z2w8eim16
	_ieg0zldpz5bp
	_79f4dams4axx
	_wp1b9vj3zww4
	_m4enov62z86
	_aupr7ue8c9tt
	_iqb0ua9if3rm
	_rex6z11nqkey
	_pfxbpje5yoxn
	_bey5p92zg96d
	_9c7896ska9uc
	_uyk5mlorb8l7
	_jq4n0xu41mwg
	_b950td1t6ul7
	_id353phor3fu
	_eanmj1cljltj
	_60b4ywldj66w
	_qmp5lwlyyts4
	_cx8yfsi8z7dl
	_ve5puupcu8eb
	_4tmu92mvcuhs
	_c2c40s6tcrio
	_ii9mb02za53u
	_5gs4fkl031ff
	_qe9dy4dk1du
	_b0jtoyt04b24
	_l8you1ywfthj
	_n2n3don3imk5
	_rwe8kv4n6fqr
	_ydrfoxsgvhco
	_z38poa8lpibi
	_bfkvdvtblohe
	kix.nfforpomq23x
	kix.3cc4moowzhsg
	_i6ni2xc7o7ct
	_xe380ryfilc9
	_tb5z7cycdkq0
	_dxzek1buly76
	_fpy5j6vltkhs
	_avygecvjmn2i
	_kjogf0nclgqf
	_bsn6o4gmho6
	_bve0py5m312g
	_3bocnj20j5dw
	_vibekxaxltt
	_ylnxjabnmlux
	_b2rd9q9ptqlk
	_t42897s9doj0
	_s4lu3qxe0gfw
	_aeygjqslo1ag
	_vebmrlqk3pfy
	_11u6xy15uo7l
	_cbg5vyexnqmn
	n65gedwznmem
	_xmpja7me9k1n
	_iza3d8r19v3f
	_xd6th88rbmy4
	_u1707qc6jxvd
	_203tt3l2ygs3
	_tam1bj3lmxwy
	_21hi632ajer3
	_mdkgp3dlnin
	_wgtnvtysi89n
	_9az5aerrp01z
	_2wf7g2slzwjb
	_6fnzud7trhp1
	_gw3fxphnmhjp
	_4hc8bzovq6i2
	_y8y0wlq0hxws
	Introduction
	Choose URP for performance and visual quality
	Rendering optimization

	Profiling tips
	Profile early, often, and on the target device
	Focus on optimizing the right areas
	Understand how the Unity Profiler works
	Use the Profile Analyzer
	Work on a specific time budget per frame
	Account for device temperature
	Determine if you are GPU-bound or CPU-bound
	Test on both min-spec and max-spec devices

	Memory management for XR, web, and mobile games
	Efficient memory management
	Use the Memory Profiler
	Reduce the impact of garbage collection (GC)
	Time garbage collection whenever possible
	Use the Incremental Garbage Collector to split the GC workload

	Adaptive Performance
	Assets
	Import textures correctly
	Compress textures
	Adjust mesh import settings
	Check your polygon counts
	Automate your import settings using the AssetPostprocessor
	Unity DataTools
	Use the Addressable Asset System

	Programming and code architecture
	Understand the Unity PlayerLoop
	Minimize code that runs every frame
	Avoid heavy logic in Start/Awake
	Avoid empty Unity events
	Remove Debug Log statements
	Use hash values instead of string parameters
	Choose the right data structure
	Avoid adding components at runtime
	Cache GameObjects and components
	Use object pools
	Use ScriptableObjects

	Project configuration
	Reduce or disable Accelerometer Frequency
	Disable unnecessary Player or Quality settings
	Disable unnecessary physics
	Choose the right frame rate
	Avoid large hierarchies
	Transform once, not twice

	Vsync in XR, web, and mobile development
	Vsync Count

	Graphics and GPU optimization
	GPU optimization
	Benchmark the GPU
	Watch the rendering statistics
	Reduce Draw Calls

	Use draw call batching
	GPU Resident Drawer
	Use the Frame Debugger
	Split Graphics Jobs

	Avoid too many dynamic lights
	Disable shadows
	Bake your lighting into lightmaps
	GPU light baking

	Use Light Layers
	Adaptive Probe Volumes
	Use Level of Detail (LOD)
	Use occlusion culling to remove hidden objects
	GPU occlusion culling
	Avoid mobile native resolution
	Limit use of cameras
	Spatial-Temporal Post-Processing

	Shaders
	Keep shaders simple and optimized
	Minimize overdraw and alpha blending
	Limit post-processing effects
	Be careful with Renderer.material
	Optimize SkinnedMeshRenderers
	Minimize reflection probes
	System Metrics Mali

	User interface
	UGUI performance optimization tips
	Divide your Canvases
	Hide invisible UI elements
	Limit GraphicRaycasters and disable Raycast Target
	Avoid Layout Groups
	Avoid large List and Grid views
	Avoid numerous overlaid elements
	Use multiple resolutions and aspect ratios
	When using a fullscreen UI, hide everything else
	Assign the Camera to World Space and Camera Space Canvases

	UI Toolkit performance optimization tips
	Use efficient layouts
	Avoid expensive operations in Update
	Optimize event handling
	Optimize style sheets
	Profile and optimize
	Test on target platforms

	Audio
	Make sound clips mono when possible
	Use original uncompressed WAV files as your source assets
	Compress the clip and reduce the compression bitrate
	Choose the proper Load Type
	Unload muted AudioSources from memory
	Use the Sample Rate Setting

	Animation
	Use generic rather than humanoid rigs
	Use alternatives for simple animation
	Avoid scale curves
	Update only when visible
	Optimize workflow

	Separate animating hierarchies
	Minimize binding costs
	Avoid using component-based constraints on deep hierarchies
	Consider performance implications of animation rigging

	Physics
	Simplify colliders
	Optimize your settings
	Adjust simulation frequency
	Modify CookingOptions for MeshColliders
	Use Physics.BakeMesh
	Use Box Pruning for large scenes
	Modify solver iterations
	Disable automatic transform syncing
	Use Contact Arrays
	Reuse Collision Callbacks
	Move static colliders
	Use non-allocating queries
	Batch queries for ray casting
	Visualize with the Physics Debugger
	Workflow and collaboration

	Unity Version Control
	Break up large scenes
	Remove unused resources
	Platform-specific tips for Unity Web Builds

	Framerate
	Publishing settings for Unity Web

	Compression
	Strip engine code
	Choose “None” in the Enable Exceptions setting
	Target WebAssembly 2023 feature set
	Code Optimization settings
	Profiling Unity Web Builds

	Chrome DevTools

	XR optimization tips
	Render Mode
	Foveated rendering
	Utilize the XR Interaction Toolkit
	Performance testing for XR optimization
	Resources for advanced developers and artists

	Botón 3:
	Página 8:
	Página 9:
	Página 11:
	Página 21:
	Página 25:
	Página 27:
	Página 33:
	Página 41:
	Página 45:
	Página 47:
	Página 62:
	Página 67:
	Página 71:
	Página 73:
	Página 76:
	Página 79:
	Página 97:

