— E-BOOK eﬁ

Optimize your game
performance for
mobile, XR, and the

web in Unity

© 2024 Unity Technologies Unity 2

Contents

Introduction ...ttt i 8
Choose URP for performance and visual quality 9
Rendering optimization. 10
Profiling tips.....cooiiiiiiiiiii it ittt 1"
Profile early, often, and on the target device.......... 1
Focus on optimizing therightareas 12
Understand how the Unity Profiler works. 14
Use the Profile Analyzer. 18
Work on a specific time budget perframe 18
Account for device temperature 19
Determine if you are GPU-bound or CPU-bound. 19
Test on both min-spec and max-spec devices 20
Memory management for XR, web, and mobile games........ 21
Efficient memory management 21
Use the Memory Profiler 23
Reduce the impact of garbage collection (GC) 23
Time garbage collection whenever possible 24

Use the Incremental Garbage Collector

tosplitthe GCworkload 24
Adaptive Performance..............cciiiiiiiiiiiiinnnns 25
ASSelS .. i i i i i et e 27

Import texturescorrectly i, 28

Compresstexturest 29

Adjust mesh import settings 30

Check your polygoncounts 31

Automate your import settings

using the AssetPostprocessor 31

Unity DataTools.t 31

Use the Addressable Asset System 32
Programming and code architecture 33
Understand the Unity PlayerLoop 34
Minimize code that runs every frame 35

Avoid heavy logic in Start/Awake 35

Avoid empty Unityevents 36
Remove Debug Log statements 36

Use hash values instead of string parameters 37
Choose the right data structure 37

Avoid adding components at runtime 37
Cache GameObjects and components 37

Use objectpools. ... 38

Use ScriptableObjects 39
Projectconfiguration................ ... 0 i, a1
Reduce or disable Accelerometer Frequency 41
Disable unnecessary Player or Quality settings........ 42
Disable unnecessary physics. 42
Choose theright framerate 42
Avoid large hierarchies............. 42
Transform once, nottwice........... 43
Vsync in XR, web, and mobile development 43
VsyncCount. 44

Graphics and GPU optimization.......................... 45

GPUoptimizationottt 47

Benchmarkthe GPU 47

Watch the rendering statistics 48
ReduceDraw Calls i, 49
Usedraw callbatching 49
GPU ResidentDrawero, 51
Use the Frame Debugger 52
Split Graphics Jobs. i 53
Avoid too many dynamiclights 53
Disable shadows 54
Bake your lighting into lightmaps 54
GPU lightbaking i,)
Use LightLayers, 56
Adaptive Probe Volumes 56
Use Level of Detail (LOD)cvviin.. 58
Use occlusion culling to remove hidden objects 59
GPUocclusionculling. ..., 59
Avoid mobile native resolution 60
Limituseofcameras......... 60
Spatial-Temporal Post-Processing 60
Shaders..... ..ottt i it i 62
Keep shaders simple and optimized 62
Minimize overdraw and alpha blending. 63
Limit post-processingeffects 64
Be careful with Renderer.material 64
Optimize SkinnedMeshRenderers 64
Minimize reflection probes 65

SystemMetricsMali............ 65

Userinterfacecciiiiiiiiiiiiinerennennnennnens 67

UGUI performance optimization tips................. 67
DivideyourCanvases ..., 67
Hide invisible Ul elements 68

Avoid Layout Groupso oo e 69
Avoid large List and Grid views 69
Avoid numerous overlaid elements. 69
Use multiple resolutions and aspect ratios 69

When using a fullscreen Ul, hide everything else ..70

Assign the Camera to World Space

and Camera SpaceCanvases 70

Ul Toolkit performance optimizationtips 71
Use efficientlayouts., 71

Avoid expensive operationsinUpdate 71
Optimize eventhandling. 72
Optimize stylesheets........... ... i, 72
Profile and optimize 72
Testontargetplatforms........................... 72
AUudiooo i i i i i i 73
Make sound clips mono when possible 74

Use original uncompressed WAV files
asyoursourceassets.......... ... i 74

Compress the clip and reduce the compression bitrate 74
Choose the proper Load Type, 75
Unload muted AudioSources from memory 75

Use the Sample Rate Setting. 75

Y 3 112 = 14 oY o TS 76

Use generic rather than humanoid rigs. 76
Use alternatives for simple animation................ 77
Avoid scalecurves i 77
Update only whenwvisible. 77
Optimize workflow i 77

Separate animating hierarchies 78

Minimize bindingcosts 78

Avoid using component-based constraints on deep
hierarchies i i 78

Consider performance implications

of animationrigging.o L. 78

[23723 [79
Simplify colliders i 79
Optimizeyoursettings 80
Adjust simulation frequency. 80
Modify CookingOptions for MeshColliders............ 82
Use Physics.BakeMesh. 83
Use Box Pruning for largescenes 84
Modify solveriterations 85
Disable automatic transformsyncing 86
UseContact Arrays. ...t iii e 87
Reuse Collision Callbacks. 87
Move staticcolliders.o 88
Use non-allocatingqueries 89
Batch queries forray casting 89

Visualize with the Physics Debugger 90

Workflow and collaboration 90

Unity VersionControl. 91
Break up largescenes, 92
Remove unusedresources 92
Platform-specific tips for Unity Web Builds 92
Framerate....... i K]
Publishing settings for Unity Web K]
ComPressSioN ..ot 93
Stripenginecode........... . i, 94

Choose “None” in the Enable Exceptions setting ..95

Target WebAssembly 2023 featureset........... 96

Code Optimization settings 96

Profiling Unity Web Builds 96
Chrome DevTools., 96
XRoptimizationtips.............ciiiiiiiii i i e e 97
RenderMode. i 97
Foveated rendering., 98
Utilize the XR Interaction Toolkit 99
Performance testing for XR optimization 100

Resources for advanced developers and artists 100

Introduction

This guide brings together all the best and latest mobile, XR, and Unity Web performance
optimization tips for Unity 6. It is one of two optimization guides available, the other being
Optimize your game performance for consoles and PC in Unity.

Optimizing your mobile, XR, or Unity Web application is an essential process that underpins the
entire game development cycle. Hardware continues to evolve, and your game’s optimization —
along with its art, game design, audio, and monetization strategy — plays a key role in shaping
the player experience.

Mobile, XR, and web games have active user bases reaching the billions. In the case of mobile,
if your game is highly optimized, it has a better chance at passing certification from platform-
specific stores. Aim for a performant application on the widest range of devices to maximize

your opportunity for success at launch and beyond.

This e-book assembles knowledge and advice from Unity engineers who have partnered with
developers across the industry to help them launch the best games possible.

Start optimizing with support from the Unity team.

' Note that many of the optimizations discussed here may introduce additional complexity, which can mean extra maintenance and potential
bugs. Balance performance gains against the time and labor cost when implementing these best practices.

© 2024 Unity Technologies 8 0f 100 | unity.com

https://unity.com/releases/lts

Choose URP for

performar

visual qua

ce and
Ity

Unity recommends the Universal Render Pipeline (URP) for developing XR (extended

reality), web, and mobile games and applications. URP is designed for high performance

and scalability, offering efficient rendering that can adapt to a wide range of hardware. It
enables you to achieve better visual quality while maintaining smooth performance, making it
ideal for platforms where resource efficiency is crucial, such as WebGL and mobile devices.
Additionally, URP allows for easier customization, ensuring your applications run optimally

across diverse environments.

Universal Render Pipeline

s designed for beginners and Intermediate users who want to discover the

itorials > Show T

Choose URP as your render pipeline if you are developing a Unity mobile, XR, or web game.

© 2024 Unity Technologies

9 of 100 | unity.com

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/urp/urp-introduction.html

@ atroduction | Choose URP for performance and visual quality | Profiling tips

In addition to selecting the URP you can adjust the render pipeline asset to further customize
your settings.

Rendering optimization

URP offers presets tailored for quality and performance. for tetherless VR experiences or AR
apps on mobile devices. Selecting the appropriate render settings optimizes your application
for mobile hardware, ensuring efficient rendering and smooth performance. The optimized
settings of URP manage texture quality, shadow resolution, and lighting efficiently, providing
a balance between visual fidelity and performance suitable for the constraints of mobile and
tetherless XR devices.

Render pipeline asset

© 2024 Unity Technologies 10 of 100 | unity.com

https://unity.com/releases/lts

Profiling tips

Profile early, often, and on the target device

Profiling is the process of measuring aspects of your game’s performance at runtime and to
track down the cause of a performance problem. By monitoring the profiling tool as you make
changes, you can gauge whether changes actually fix the performance problem.

© 2024 Unity Technologies 11 0f 100 | unity.com

https://unity.com/releases/lts

@ | Profiling tips |

For mobile, XR, and web projects, it’s crucial to profile your application early and throughout the
development cycle, not just when you're nearing launch. Address performance issues such as
glitches or spikes as soon as they appear, and benchmark performance before and after major
changes. By developing a clear “performance profile” for your project, you can more easily
identify and resolve new issues, ensuring optimal performance across all target platforms.

While profiling in the Editor can give you an idea of the relative performance of different
systems in your game, profiling on each device gives you the opportunity to gain more accurate
insights. Profile a development build on target devices whenever possible. Remember to profile
and optimize for both the highest- and lowest-spec devices that you plan to support.

Unity offers a suite of profiling tools to help identify bottlenecks including

the Unity Profiler, the Memory Profiler and Profile Analyzer. There are also native tools from
iOS and Android for further performance testing on their respective hardware:

— 0OniQS, use Xcode and Instruments.

— On Android / Arm use:

— Android Studio: The latest Android Studio includes a new Android Profiler that
replaces the previous Android Monitor tools. Use it to gather real-time data about
hardware resources on Android devices.

— Arm Mobile Studio: This suite of tools can help you profile and debug your games
in great detail, catering toward devices running Arm hardware.

— Snapdragon Profiler: Specifically for Snapdragon chipset devices only. Analyze
CPU, GPU, DSP, memory, power, thermal, and network data to help find and fix
performance bottlenecks.

— Developer tools for Meta Quest: See Meta's developer tools website for
information about developing apps for Meta Quest headsets.

Certain hardware can also take advantage of Intel VTune, which helps you to find and fix
performance bottlenecks on Intel platforms (with Intel processors only).

Focus on optimizing the right areas

Don’t guess or make assumptions about what is slowing down your game’s performance. Use
the Unity Profiler and platform-specific tools to locate the precise source of a lag. Profiling
tools ultimately help you understand what'’s going on under the hood of your Unity project,
but don’t wait for significant performance problems to start showing before digging into your
detective toolbox.

Of course, not every optimization described here will apply to your application. Something

that works well in one project may not translate to yours. Identify genuine bottlenecks and

concentrate your efforts on what benefits your work. To learn more about how to plan your
profiling workflows see the Ultimate guide to profiling Unity games.

© 2024 Unity Technologies 12 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/Profiler.html?
https://docs.unity3d.com/Packages/com.unity.memoryprofiler@1.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.performance.profile-analyzer@1.2/manual/index.html
https://developer.apple.com/documentation/xcode/
https://help.apple.com/instruments/mac/current/#/dev7b09c84f5
https://developer.android.com/studio/profile
https://developer.android.com/studio/profile/android-profiler
https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio
https://developer.qualcomm.com/software/snapdragon-profiler
https://developers.meta.com/horizon/resources/developer-tools/#performance-monitoring-and-profiling-tools
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://resources.unity.com/games/ultimate-guide-to-profiling-unity-games?ungated=true

@ | Profiling tips |

& unity

ULTIMATE GUIDE
TO PROFILING
UNITY GAMES 1 ULTIMATE GUIDE

TO PROFILING
UNITY GAMES

Follow this flowchart and use the Profiler to help pinpoint where to focus your optimization efforts:

= START HERE

Yes, render thread

Mo, main thread bound job threads

o : 4

Whereis
the bottleneck?

What now?

What might
the fix be?

SOURCE: ULTIMATE GUIDE TO PROFILING UNITY GAMES E-B00K

A chart from the profiling e-book featuring a workflow you can follow to profile your Unity projects efficiently

© 2024 Unity Technologies 13 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts

Understand how the Unity Profiler works

The Unity Profiler can help you detect the causes of any lags or freezes at runtime and better
understand what’s happening at a specific frame or point in time.

The Profiler is instrumentation-based; it profiles timings of game and engine code that are
automatically marked up (such as MonoBehaviour’s Start or Update methods, or specific API
calls), or explicitly wrapped with the help of ProfilerMarker API.

Begin by enabling the CPU and Memory tracks as your default. You can monitor

supplementary Profiler Modules like Renderer, Audio, and Physics, as needed for your game
(e.g., physics-heavy or music-based gameplay).

TransformCha

plicier Trany Py sics. Processin

Use the Unity Profiler to test performance and resource allocation for your application.

To capture profiling data from an actual mobile device within your chosen platform, check
the Development Build and Autoconnect Profiler boxes before you click Build and Run.
Alternatively, if you want the app to start separately from your profiling, you can uncheck the
Autoconnect Profiler box, and then connect manually once the app is running.

© 2024 Unity Technologies 14 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/Profiler.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Unity.Profiling.ProfilerMarker.html?

@ | Profiling tips |

@ Build Profiles

WebGL

Build Data

0 . Add Build Profile

Platform Setting:

Add Build Profile

Adjust your Build Settings before profiling.

Choose the platform target to profile. The Record button tracks several seconds of your
application’s playback (300 frames by default). Go to Unity > Preferences > Analysis >
Profiler > Frame Count to increase this as far as 2000 if you need longer captures. While this
means that the Unity Editor has to do more CPU work and take up more memory, it can be
useful depending on your specific scenario.

© 2024 Unity Technologies 15 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts

@ Choose URP for performance and visual quality | Profiling tips | Memory management for XR, web, and mobile games

Use the Timeline view to determine if you are CPU-bound or GPU-bound.

If you need in-depth analysis capturing detailed information about your application you can
also use the Deep Profiling setting. This enables Unity to profile the beginning and end of
every function call in your script code, telling you exactly which part of your application is
being executed and potentially causing a delay. However, deep profiling adds overhead to
every method call and may skew the performance analysis as it slows down the execution of
your game during the profiling session.

Click in the window to analyze a specific frame. Next, use either the Timeline or Hierarchy
view for the following:

— Timeline shows the visual breakdown of timing for a specific frame. This allows you to
visualize how the activities relate to one another and across different threads. Use this
option to determine if you are CPU- or GPU-bound:

— If the CPU frame time is significantly higher than the GPU frame time, your game
is CPU-bound. This means the CPU is taking longer to process the game logic,

physics, or other calculations, and the GPU is waiting for the CPU to finish its tasks.

— Similarly, if the GPU frame time is higher than the CPU frame time, your game is
GPU-bound. This indicates that the GPU is taking longer to render graphics, and
the CPU is waiting for the GPU to finish rendering.

© 2024 Unity Technologies

16 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/ProfilerWindow.html#deep-profiling

@ Choose URP for performance and visual quality | Profiling tips | Memory management for XR, web, and mobile games

— The Timeline Hierarchy shows the hierarchy of ProfileMarkers, grouped together. This
allows you to sort the samples based on time cost in milliseconds (Time ms and Self
ms). You can also count the number of Calls to a function and the managed heap
memory (GC Alloc) on the frame. By sorting by Time ms or Self ms, you can then identify
the functions that are taking the most time, either on their own or due to the functions
they call. This helps you focus your optimization efforts on the areas that will give the
biggest performance gains.

The Hierarchy view allows you to sort ProfileMarkers by time cost.

You can find a complete overview of the Unity Profiler here. If you're new to profiling, you can
also watch this Introduction to Unity Profiling.

Before optimizing anything in your project, save the Profiler .data file. Implement your changes

and compare the saved .data before and after the modification. Rely on this cycle to improve
performance: profile, optimize, and compare. Then, rinse and repeat.

© 2024 Unity Technologies 17 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://resources.unity.com/games/ultimate-guide-to-profiling-unity-games?ungated=true
https://youtube.com/watch?v=xjsqv8nj0cw

@ Choose URP for performance and visual quality | Profiling tips | Memory management for XR, web, and mobile games

Use the Profile Analyzer

The Profile Analyzer lets you aggregate multiple frames of Profiler data and then locate frames
of interest. Do you want to see what happens to the Profiler after you make a change to your
project? The Compare view allows you to load and differentiate two data sets, so you can

test changes and improve their outcome. The Profile Analyzer is available via Unity’s Package
Manager. Watch this Profile Analyzer tutorial to learn more about its features.

Playerl cop
PlayerLoop

omparisaon for currently s

Take an even deeper dive into frames and marker data with the Profile Analyzer, which complements the existing Profiler.

Work on a specific time budget per frame

Each frame will have a time budget based on your target frames per second (fps). For an
application to run at 30 fps, its frame budget can’t exceed 33.33 ms per frame (1000 ms/30
fps). Likewise, a target of 60 fps leaves 16.66 ms per frame (1000 / 60 fps).

When developing virtual reality (VR) apps, maintaining a high and stable frame rate is even

more critical to ensure a smooth and immersive experience, and to prevent motion sickness.
The most common target for VR applications is 90 fps, which gives you a strict frame budget

© 2024 Unity Technologies 18 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.performance.profile-analyzer@1.2/manual/index.html
https://www.youtube.com/watch?v=Ypg84Fr20Sw&t=1s

e | Profiling tips |

of just 11.11 ms per frame (1000 ms / 90 fps). This higher requirement is necessary because VR
needs to render each frame twice—once for each eye—and small imperfections in timing can
be far more noticeable to the user.

A consistent and high frame rate is also essential for Unity Web Builds, the performance of
which is highly dependent on the browser’s efficiency and the hardware capabilities. A tight
time budget per frame remains a critical factor. For example, if you're targeting 60 fps in a
Unity WebGL build, you still have only 16.66 ms per frame to work with. This budget includes
all aspects of rendering, physics calculations, and game logic, which means that optimizing
every part of your application is crucial. Efficient management of assets, reducing the
complexity of scenes, and optimizing shaders and scripts are all necessary steps to ensure
that your application can meet its performance targets.

It's also important to consider the impact of WebAssembly (Wasm) performance, which Unity
uses to compile and run your code in the browser. While Wasm offers significant performance
improvements over traditional JavaScript, it’s still important to profile and optimize your code
to ensure that you're making the most of the available frame time.

Account for device temperature

For mobile, however, it's generally not recommended to use this maximum time consistently
as the device can overheat and the OS can thermal throttle the CPU and GPU. A general rule
of thumb is use only about 65% of the available time to allow for cooldown between frames. A
typical frame budget will be approximately 22 ms per frame at 30 fps and 11 ms per frame at
60 fps.

Devices can exceed this budget for short periods of time (e.g., for cutscenes or loading
sequences) but not for a prolonged duration.

Most mobile devices do not have active cooling like their desktop counterparts. Physical heat
levels can directly impact performance.

If the device is running hot, the Profiler might perceive and report poor performance, even if
it is not cause for long-term concern. To combat profiling overheating, profile in short bursts.
This cools the device and simulates real-world conditions. Our general recommendation is to
keep the device cool for 10-15 minutes before profiling again.

Determine if you are GPU-bound or CPU-bound

The central processing unit (CPU) is responsible for determining what must be drawn, and the
graphics processing unit (GPU) is responsible for drawing it. When a rendering performance
problem is due to the CPU taking too long to render a frame, the game becomes CPU bound.
When a rendering performance problem is due to the GPU taking too long to render a frame, it
becomes GPU bound.

© 2024 Unity Technologies 19 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts

Q | Profiling tips |

The Profiler can tell you if your CPU is taking longer than your allotted frame budget, or if the
culprit is your GPU. It does this by emitting markers prefixed with Gfx as follows:

— If you see the Gfx.WaitForCommands marker, it means that the render thread is ready,
but you might be waiting for a bottleneck on the main thread.

— If you frequently encounter Gfx.WaitForPresent, it means that the main thread is ready
but might be waiting for the GPU to present the frame.

Test on both min-spec and max-spec devices

There is a wide range of iOS and Android devices out there. We want to reiterate the
importance of testing your project on the minimum and maximum device specifications that
you want your application to support, whenever possible.

© 2024 Unity Technologies 20 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts

Memory management
for XR, web, and

mobile games

Effective memory management is crucial for ensuring smooth performance. Unity handles
automatic memory management for your scripts and user-generated code, allocating small,
transient data on the stack and larger, long-term data on managed or native heaps. However,
the demands of XR, web, and mobile applications require a more careful approach to memory
usage, as inefficient memory management can lead to performance issues such as slow
frame rates, increased load times, and even application crashes. In this section, we'll explore
strategies to optimize memory usage across these platforms, helping you deliver responsive
and stable applications.

Efficient memory management

To deliver smooth and responsive experiences across platforms, it's essential to carefully
manage object lifecycles, minimize garbage collection overhead, and optimize asset loading
strategies.

Manage object lifecycles: Properly manage the creation and destruction of objects to prevent
memory leaks and unnecessary resource usage. Use Destroy() to remove unused objects and
set references to null when they are no longer needed, which can free up memory.

Object pooling: Reuse frequently used objects, such as bullets, enemies, and Ul elements,
rather than creating and destroying them repeatedly. Implementing object pools can
significantly reduce the overhead associated with object instantiation and destruction and
save on memory resources. Read more about object pooling in a Unity project.

© 2024 Unity Technologies 210100 | unity.com

https://unity.com/releases/lts
https://unity.com/how-to/use-object-pooling-boost-performance-c-scripts-unity

@ Profiling tips | Memory management for XR, web, and mobile games | Adaptive Performance

Reduce garbage collection impact: Minimize allocations to reduce the frequency and impact
of garbage collection, which can cause performance hitches. Avoid frequent allocations

in update loops by preallocating arrays and lists where possible. Use value types (structs)
instead of reference types (classes) when appropriate, as structs are allocated on the stack
and do not contribute to garbage collection overhead.

Optimize asset loading with the following techniques:

— Lazy loading: Defer the loading of resources until they are actually needed. This can
facilitate faster initial load times and more efficient resource management.

— Unload unused assets: Use Resources.UnloadUnusedAssets(), to free up memory
occupied by assets that are no longer needed.

— Use the Addressable Asset System: Utilize the Addressable Asset System to manage
assets asynchronously at runtime. This system is particularly beneficial for web and
mobile platforms, supporting remote asset hosting, dynamic content updates, and lazy
loading.

The garbage collector periodically identifies and deallocates unused managed heap memory.
The asset garbage collection runs on demand or when you load a new scene and deallocates
native objects and resources. While this runs automatically, the process of examining all the
objects in the heap can cause the game to stutter or run slowly.

Optimizing your memory usage means being conscious of when you allocate and deallocate
heap memory, and how you minimize the effect of garbage collection.

See Understanding the managed heap for more information.

Inspect

Capture, inspect, and compare snapshots in the Memory Profiler.

© 2024 Unity Technologies 22 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/performance-memory-overview.html

@ | Memory management for XR, web, and mobile games |

Use the Memory Profiler

The Memory Profiler package takes a snapshot of your managed heap memory to help you
identify problems like fragmentation and memory leaks. For a quick introduction check out this
Unity video here.

Use the Unity Objects tab to identify areas where you can eliminate duplicate memory entries
or find which objects use the most memory. The All of Memory tab displays a breakdown of
all the memory in the snapshot that Unity tracks.

Learn how to leverage the Memory Profiler in Unity for improved memory usage.

Reduce the impact of garbage collection (GC)

Unity uses the Boehm-Demers-Weiser garbage collector, which stops running your program
code and only resumes normal execution once its work is complete.

Be aware of certain unnecessary heap allocations that can cause GC spikes:

— Strings: In C#, strings are reference types, not value types. Reduce unnecessary string
creation or manipulation if you are using them at large scale. Avoid parsing string-
based data files such as JSON and XML; store data in ScriptableObjects or formats
like MessagePack or Protobuf instead. Use the StringBuilder class if you need to build
strings at runtime.

— Unity function calls: Some functions create heap allocations. Cache references to arrays
rather than allocating them in the middle of a loop. Also, take advantage of certain
functions that avoid generating garbage. For example, use GameObject.CompareTag
instead of manually comparing a string with GameObject.tag (as returning a new string
creates garbage).

— Boxing: Avoid passing a value-typed variable in place of a reference-typed variable.
This creates a temporary object, and the potential garbage that comes with it implicitly
converts the value type to a type object (e.g., inti = 123; object o = i). Instead, try to
provide concrete overrides with the value type you want to pass in. Generics can also be
used for these overrides.

— Coroutines: Though yield does not produce garbage, creating a new WaitForSeconds
object does. Cache and reuse the WaitForSeconds object rather than creating it in the
yield line.

— LINQ and Regular Expressions: Both of these generate garbage from behind-the-
scenes boxing. Avoid LINQ and Regular Expressions if performance is an issue. Write for
loops and use lists as an alternative to creating new arrays.

For more information, see the manual page on Garbage collection best practices.

© 2024 Unity Technologies 23 0f 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.memoryprofiler@1.1/manual/index.html
https://www.youtube.com/watch?v=Uuzd39AjFWQ&t
https://docs.unity3d.com/Packages/com.unity.memoryprofiler@latest
https://www.hboehm.info/gc/
https://msdn.microsoft.com/en-us/library/system.text.stringbuilder
https://docs.unity3d.com/6000.0/Documentation/Manual/performance-garbage-collection-best-practices.html

@ | Profiling tips | Memory management for XR, web, and mobile games | Adaptive Performance

@ Project Settings

Time garbage collection whenever possible

If you are certain that a garbage collection freeze won't affect a specific point in your game,
you can trigger garbage collection with System.GC.Collect.

See Understanding automatic memory management for examples of how to use this to your
advantage.

Use the Incremental Garbage Collector to split the GC
workload

Rather than creating a single, long interruption during your program’s execution, incremental
garbage collection uses multiple, much shorter interruptions that distribute the workload over
many frames. If garbage collection is impacting performance, try enabling this option to see
if it can reduce the problem of GC spikes. Use the Profile Analyzer to verify its benefit to your
application.

Configuration

Use the Incremental Garbage Collector to reduce GC spikes.

© 2024 Unity Technologies 24 0f 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/performance-garbage-collector.html
https://docs.unity3d.com/6000.0/Documentation/Manual/performance-garbage-collector.html

Adaptive Performance

With Unity and Samsung’s Adaptive Performance, you can monitor the device’s thermal and
power state to ensure that you are ready to react appropriately. When users play for an
extended period of time, you can reduce your level of detail (LOD) bias dynamically so that
your game continues to run smoothly. Adaptive Performance allows developers to increase
performance in a controlled way while maintaining graphics fidelity.

While you can use Adaptive Performance APIs to fine-tune your application, Adaptive
Performance also offers several automatic modes. In these modes, Adaptive Performance
determines the game settings along several key metrics:

— Desired frame rate based on previous frames

— Device temperature level

— Device proximity to thermal event

— Device bound by CPU or GPU

These four metrics dictate the state of the device, and Adaptive Performance tweaks the

adjusted settings to reduce the bottleneck. This is done by providing an integer value, known
as an Indexer, to describe the state of the device.

To learn more about Adaptive Performance, you can view the samples we've provided in

the Package Manager by selecting Package Manager > Adaptive Performance > Samples.
Each sample interacts with a specific scaler, so you can see how the different scalers impact
your game. We also recommend reviewing the end-user documentation to learn more about
Adaptive Performance configurations and how you can interact directly with the API.

© 2024 Unity Technologies 25 of 100 | unity.com

https://unity.com/releases/lts
https://developer.samsung.com/galaxy-gamedev/ap-userguide/v2.html
https://docs.unity3d.com/Packages/com.unity.adaptiveperformance@2.1/manual/samples-guide.html
https://docs.unity3d.com/Packages/com.unity.adaptiveperformance@5.0/manual/samples-guide.html
https://docs.unity3d.com/Packages/com.unity.adaptiveperformance@5.0/manual/index.html

@ | Adaptive Performance

Note that Adaptive Performance only works for Samsung devices.

3 Package

Adaptive Performance

Impart

Impart

Impart

Impart

Impart

Imgart

Impart

Impart

The Adaptive Performance package

Frame Rate

Adaptive Performance

Without Adaptive Performance

10

Time [m]

© 2024 Unity Technologies 26 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

Assets

A well-optimized asset pipeline can speed up load times, reduce memory usage, and improve
runtime performance. By working with an experienced technical artist, your team can define
and enforce asset formats, specifications, and import settings to ensure an efficient and
streamlined workflow.

Don't rely solely on default settings. Take advantage of the platform-specific override tab to
optimize assets like textures, mesh geometry, and audio files. Incorrect settings can result in
larger build sizes, longer build times, and poor memory usage.

Consider using Presets to establish baseline settings tailored to your specific project needs.
This proactive approach helps ensure that assets are optimized from the start, leading to
better performance and a more consistent experience across all platforms.

For more guidance, refer to the best practices for art assets or explore the 3D Art Optimization
for Mobile Applications course on Unity Learn. These resources provide valuable insights that
can help you make informed decisions about asset optimization for Unity web builds, mobile,
and XR applications.

© 2024 Unity Technologies 27 of 100 | unity.com

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/Presets.html
https://docs.unity3d.com/Manual/HOWTO-ArtAssetBestPracticeGuide.html?utm_source=demand-gen&utm_medium=pdf&utm_campaign=asset-links-gmg-elevate-your-game&utm_content=optimize-mobile-game-performance-ebook
https://learn.unity.com/course/3d-art-optimization-for-mobile-gaming-5474?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=mobile-performance-optimization-ebook
https://learn.unity.com/course/3d-art-optimization-for-mobile-gaming-5474?utm_source=demand-gen&utm_medium=pdf&utm_campaign=clean-code&utm_content=mobile-performance-optimization-ebook

@ Adaptive Performance \ Assets \ Programming and code architecture

Import textures correctly

Import settings are crucial because textures often consume the most memory. Consider the
following guidelines to optimize your textures:

— Lower the Max Size: Use the minimum settings that produce visually acceptable results.
This is non-destructive and can quickly reduce your texture memory.

— Use powers of two (POT): Unity requires POT texture dimensions for mobile texture
compression formats (PVRCT or ETC).

— Atlas your textures: Atlasing is the
process of grouping together several
smaller textures into a single larger
texture of uniform size. Placing multiple
textures into a single texture can reduce
draw calls and speed up rendering. Use
the Unity Sprite Atlas or the third-party
TexturePacker to atlas your textures.

— Toggle off the Read/Write Enabled
option: When enabled, this option
creates a copy in both CPU- and GPU-
addressable memory, doubling the
texture’s memory footprint. In most
cases, keep this disabled. If you are
generating textures at runtime, enforce
this via Texture2D.Apply, passing in
makeNoLongerReadable set to true.

— Disable unnecessary mipmaps: While
mipmaps can optimize performance by
reducing the amount of detail that needs
to be rendered at different distances
from the camera, they aren't always
needed. For textures that remain at a
consistent size onscreen, such as 2D

(o2acI028 RoB AN A sprites and Ul graphics you can leave

them out (leave mipmaps enabled for 3D

models with varying distance from the
camera).

Proper texture import settings will help optimize your build size.

© 2024 Unity Technologies 28 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/class-SpriteAtlas.html?
https://www.codeandweb.com/texturepacker

@ \ Adaptive Performance \ Assets \ Programming and code architecture

Compress textures

Consider these two examples using the same model and texture. The settings on the left
consume almost 26 times the memory as those on the right, without much improvement in
visual quality.

i

Uncompressed textures require more memory.

Use Adaptive Scalable Texture Compression (ATSC) for mobile, XR and Web. The vast majority
of games in development tend to target min-spec devices that support ATSC compression.

The only exceptions are:

— i0S games targeting A7 devices or lower (e.g., iPhone 5, 58S, etc.) - use PVRTC

— Android games targeting devices prior to 2016 — use ETC2 (Ericsson Texture
Compression)

If compressed formats such as PVRTC and ETC aren't sufficiently high-quality, and if ASTC is
not fully supported on your target platform, try using 16-bit textures instead of 32-bit textures.

See the manual for more information on recommended texture compression format by
platform.

© 2024 Unity Technologies 29 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/class-TextureImporterOverride.html
https://docs.unity3d.com/6000.0/Documentation/Manual/class-TextureImporterOverride.html

@ | Assets |

@ Build Profiles

WebGL

Add Buitd Profile

Shorter Build Time

Add Build Profile

Selecting ASTC for texture compression under the build settings

Adjust mesh import settings

Just like textures, meshes can consume significant memory, so choose optimal import settings
for them. Reduce the memory footprint of meshes with the following practices:

— Compress the mesh: Aggressive compression can reduce disk space (memory at
runtime, however, is unaffected). Note that mesh quantization can result in inaccuracies,
so experiment with compression levels to see what works for your models.

— Disable Read/Write: Enabling this option duplicates the mesh in memory, which keeps
one copy of the mesh in system memory and another in GPU memory. In most cases,
you should disable it (in Unity 2019.2 and earlier, this option is checked by default).

— Disable rigs and blend shapes: If your mesh does not need skeletal or blendshape
animation, disable these options wherever possible.

— Disable normals and tangents: If you are absolutely certain that the mesh material will
not need normals or tangents, uncheck these options for extra savings.

© 2024 Unity Technologies 30 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

@ Adaptive Performance \ Assets \ Programming and code architecture

i v @ = mv &

’_;'. Modal Rig Animation Materats
A Se

25" 0

Check your mesh import settings.

Check your polygon counts

Higher-resolution models mean more memory usage and potentially longer GPU times. Does
your background geometry need half a million polygons? Consider cutting down models in
your DCC package of choice. Delete unseen polygons from the camera’s point of view, and use
textures and normal maps for fine detail instead of high-density meshes.

Automate your import settings using the
AssetPostprocessor

The AssetPostprocessor allows you to hook into the import pipeline and run scripts prior to or
when importing assets. This prompts you to customize settings before and/or after importing
models, textures, audio, and so on in a way similar to presets but through code. Learn more
about the process in our GDC 2023 talk, “Technical tips for every stage of game creation.”

Unity DataTools

Unity DataTools is a collection of open source tools provided by Unity that aims to enhance
data management and serialization capabilities in Unity projects. It includes features for
analyzing and optimizing project data, such as identifying unused assets, detecting asset
dependencies, and reducing build size.

© 2024 Unity Technologies 310f 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/AssetPostprocessor.html?
https://youtu.be/o_QBMz0WZjI?list=PLX2vGYjWbI0TkxPwhWgsBhvj-EwxJDt5x&t=816
https://github.com/Unity-Technologies/UnityDataTools

@ Adaptive Performance \ Assets \ Programming and code architecture

Use the Addressable Asset System

The Addressable Asset System provides a simplified way to manage your content. This unified
system loads AssetBundles by “address” or alias, asynchronously from either a local path or a
remote content delivery network (CDN).

If you split your non-code assets (models, textures, Prefabs, audio, and even entire scenes)
into an AssetBundle, you can separate them as downloadable content (DLC).

Then, use Addressables to create a smaller initial build for your mobile application. Cloud

Content Delivery lets you host and deliver your game content to players as they progress
through the game.

cript * Build =

Load assets by “address” using the Addressable Asset System.

Click here to see how the Addressable Asset System can take the hassle out of asset
management.

© 2024 Unity Technologies 320f 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.addressables@2.3/manual/index.html
https://docs.unity3d.com/6000.0/Documentation/Manual/AssetBundlesIntro.html?
https://unity.com/products/cloud-content-delivery
https://unity.com/products/cloud-content-delivery
https://unity.com/how-to/simplify-your-content-management-addressables?

Programming and
code architecture

The Unity PlayerLoop contains functions for interacting with the core of the game engine. This
structure includes a number of systems that handle initialization and per-frame updates. All of
your scripts will rely on this PlayerLoop to create gameplay.

When profiling, you'll see your project’s user code under the PlayerLoop (with Editor
components under the EditorLoop).

The Profiler will show your custom scripts, settings, and graphics in the context of the entire engine’s execution.

Optimize your scripts with the following tips and tricks.

© 2024 Unity Technologies 33 0f 100 | unity.com

https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/LowLevel.PlayerLoop.html

Q | Assets | Programming and code architecture | Project configuration

Understand the Unity PlayerLoop

Make sure you understand the execution order of Unity’s frame loop. Every Unity script runs
several event functions in a predetermined order. You should understand the difference
between Awake, Start, Update, and other functions that create the lifecycle of a script. You
can utilize the Low-Level API to add custom logic to the player’s update loop.

Legend

Usar camaen

ks
1
O it
Fanat i callsd whan tha sorip (8 stached and not in playmors, | Fanst
Stan i only aver called Gnoo for @ Gven BCrOE Sanet

Thvn Bivesscs Gyche My ROPE=N MG B onon eor e f
e fixnd e wlep s kss o e skl frame gdats tme

IRenal animation updsts

Imatien updets
[T
[}
Unae
yiuia ni ;
IF . coarustinvm b e pravvioarsly bul i row dus b ey
e Fud ol g it W
yomia SianCan
Intarnat animation updats T
Bhaie
Gt e at
Lotatipdats
T OwWaRandorObect
ErPracun
Gullwcanmevisiie
- SR p—

Gl i called multiphs e par frame updats.

vinid WasF orEnd P rarmn

SNPRULG 5 Sallad ATler The Frants Whare The

OnAgalcat
P oo bl maues ramn belors pchuey pesing. OnanpacationP e

CmApplicasanCst
1

EnDinabie s calied oty when e scrist was disablod duriog

i friners. Dot will b Calloc if it & anabed agen S~

SrBustray

Get to know the PlayerLoop and the lifecycle of a script.

© 2024 Unity Technologies

Initialization
Editor
Initialization

Q
W

Physi

Input events

Game logic

Scene rendering

Gizmo rendering
GUI rendering

End of frame
Pausing

Decommissioning

34 0f 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/ExecutionOrder.html?

P

| Programming and code architecture |

Minimize code that runs every frame

Consider whether code must run every frame. Move unnecessary logic out of Update,
LateUpdate, and FixedUpdate. These event functions are convenient places to put code that
must update every frame, while extracting any logic that does not need to update with that
frequency. Whenever possible, only execute logic when things change.

If you do need to use Update, consider running the code every n frames. This is one way
to apply time slicing, a common technique of distributing a heavy workload across multiple
frames. In this example, we run the ExampleExpensiveFunction once every three frames:

private int interval = 3;
void Update()

{
if (Time.frameCount % interval == 0)
{
ExampleExpensiveFunction();
}
}

Better yet, if ExampleExpensiveFunction performs some operation on a set of data, consider
using time slicing to operate on a different subset of that data every frame. By doing 1/n of the
work every frame rather than all of the work every n frames, you end up with performance that
is more stable and predictable overall, rather than seeing periodic CPU spikes.

Avoid heavy logic in Start/Awake

When your first scene loads, these functions get called for each object:

— Awake
— OnEnable/OnDisable

— Start

Avoid expensive logic in these functions until your application renders its first frame.
Otherwise, you might encounter longer loading times than necessary.

Refer to the order of execution for event functions for more details.

© 2024 Unity Technologies

35 0f 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/ExecutionOrder.html?

@ | Programming and code architecture |

Avoid empty Unity events

Even empty MonoBehaviours require resources, so you should remove blank Update or
LateUpdate methods.

Use preprocessor directives if you are employing these methods for testing:

#if UNITY_EDITOR
void Update()
{

}
#endif

Here, you can freely use the Update in-Editor for testing without unnecessary overhead
slipping into your build.

Remove Debug Log statements

Log statements (especially in Update, LateUpdate, or FixedUpdate) can bog down
performance. Disable your Log statements before making a build.

To do this more easily, consider making a Conditional attribute along with a preprocessing
directive. For example, create a custom class like this:

public static class Logging
{
[System.Diagnostics.Conditional(“"ENABLE_LOG")]
static public void Log(object message)
{
UnityEngine.Debug.Log(message);
H
}

VM_METADATA

Copy Defines

Adding a custom preprocessor directive lets you partition your scripts.

© 2024 Unity Technologies 36 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.conditionalattribute?view=net-5.0

e | Programming and code architecture |

Generate your log message with your custom class. If you disable the ENABLE_LOG
preprocessor in the Player Settings, all of your Log statements disappear in one fell swoop.

The same thing applies for other use cases of the Debug Class, such as Debug.DrawLine
and Debug.DrawRay. These are also only intended for use during development and can
significantly impact performance.

Use hash values instead of string parameters

Unity does not use string names to address animator, material, and shader properties
internally. For speed, all property names are hashed into property IDs, and these IDs are
actually used to address the properties.

When using a Set or Get method on an animator, material, or shader, harness the integer-
valued method instead of the string-valued methods. The string methods simply perform
string hashing and then forward the hashed ID to the integer-valued methods.

Use Animator.StringToHash for Animator property names and Shader.PropertyTolD for material
and shader property names. Get these hashes during initialization and cache them in variables
for when they’re needed to pass to a Get or Set method.

Choose the right data structure

Your choice of data structure impacts efficiency as you iterate thousands of times per frame.
Not sure whether to use a List, Array, or Dictionary for your collection? Follow the MSDN guide
to data structures in C# as a general guide for choosing the correct structure.

Avoid adding components at runtime

Invoking AddComponent at runtime comes with some cost. Unity must check for duplicate or
other required components whenever adding components at runtime.

Instantiating a prefab with the desired components already set up is generally more performant.

Cache GameObjects and components

It's best to cache references in either Awake or Start in order to avoid calling them in the
Update method..

Here's an example that demonstrates the inefficient use of a repeated GetComponent call:

void Update()
{

Renderer myRenderer = GetComponent<Renderer>();
ExampleFunction(myRenderer) ;

© 2024 Unity Technologies 37 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Animator.StringToHash.html?
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Shader.PropertyToID.html?
https://msdn.microsoft.com/en-us/library/7y3x785f
https://msdn.microsoft.com/en-us/library/7y3x785f
https://docs.unity3d.com/6000.0/Documentation/Manual/Prefabs.html

@ | Programming and code architecture |

It's more efficient to invoke GetComponent only once, as the result of the function is cached.
The cached result can be reused in Update without any further calls to GetComponent.

private Renderer myRenderer;
void Start()

{
myRenderer = GetComponent<Renderer>();
}
void Update()
{
ExampleFunction(myRenderer) ;
}

In Unity versions prior to Unity 2020.2 GameObject.Find, GameObject.GetComponent,
and Camera.main used to be very expensive, however this is no longer the case. That
said, it's best to avoid calling them in Update methods and follow the practice above by
caching the results.

Use object pools

Instantiate and Destroy can generate garbage and garbage collection (GC) spikes, which
generally results in a slow process. Apply object pooling techniques when you need to
instantiate a large number of objects.

In this example, the ObjectPool creates 20 PlayerLaser instances for reuse.

A best practice for object pooling is to create the reusable instances when a CPU spike is less
noticeable (e.g., during a menu screen). Then track this “pool” of objects with a collection.
During gameplay, enable the next available instance when needed, disable objects instead of
destroying them, and return them to the pool.

© 2024 Unity Technologies 38 0f 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

@ | Programming and code architecture |

active pooled objects

inactive pooled objects

An example of a pool of projectile objects that’s inactive and ready to shoot.

This reduces the number of managed allocations in your project and can prevent garbage
collection problems. Unity includes a built-in object pooling feature via the UnityEngine.Pool
namespace. Available in Unity 2021 LTS and later, this namespace facilitates the management
of object pools, automating aspects like object lifecycle and pool size control.

Learn how to create a simple object pooling system in Unity here. You can also see the
object pooling pattern, and many others, implemented in a Unity scene in this sample project
available on the Unity Asset Store.

Use ScriptableObjects

Store static values or settings in a ScriptableObject instead of a MonoBehaviour. The
ScriptableObject is an asset that lives inside of the project that you only need to set up once.

MonoBehaviours carry extra overhead since they require a GameObject — and by default

a Transform - to act as a host. That means you need to create a lot of unused data before
storing a single value. The ScriptableObject slims down this memory footprint by dropping the
GameObject and Transform. It also stores the data at the project level, which is helpful if you
need to access the same data from multiple scenes.

© 2024 Unity Technologies 39 0f 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Pool.ObjectPool_1.html
https://learn.unity.com/tutorial/introduction-to-object-pooling
https://assetstore.unity.com/packages/essentials/tutorial-projects/level-up-your-code-with-design-patterns-and-solid-289616
https://assetstore.unity.com/packages/essentials/tutorial-projects/level-up-your-code-with-design-patterns-and-solid-289616

@ | Programming and code architecture |

A common use case is having many GameObjects that rely on the same duplicate data that
does not need to change at runtime. Rather than having this duplicate local data on each
GameObiject, you can funnel it into a ScriptableObject. Then, each of the objects stores a
reference to the shared data asset, rather than copying the data itself. This can provide
significant performance improvements in projects with thousands of objects.

Create fields in the ScriptableObject to store your values or settings, then reference the
ScriptableObject in your MonoBehaviours.

Inventory

Equip

Screen

In this example, a ScriptableObject called Inventory holds settings for various GameObjects.

Using those fields from the ScriptableObject can prevent unnecessary duplication of data
every time you instantiate an object with that MonoBehaviour.

In software design, this is an optimization known as the flyweight pattern. Restructuring your
code in this way using ScriptableObjects avoids copying a lot of values and reduces your
memory footprint. Learn more about the flyweight pattern and many others, as well as design
principles, in the e-book Level up your code with design patterns and SOLID.

Watch this Introduction to ScriptableObjects devlog to see how ScriptableObjects can benefit

your project. Reference Unity documentation here as well as the technical guide Create
modular game architecture in Unity with ScriptableObjects.

© 2024 Unity Technologies 40 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/resources/design-patterns-solid-ebook?isGated=alse
https://youtu.be/WLDgtRNK2VE
https://youtu.be/WLDgtRNK2VE
https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://resources.unity.com/games/create-modular-game-architecture-with-scriptable-objects-ebook?ungated=true
https://resources.unity.com/games/create-modular-game-architecture-with-scriptable-objects-ebook?ungated=true

Project configuration

There are a few Project Settings that can affect your mobile performance.

Reduce or disable Accelerometer Frequency

Unity pools your mobile’s accelerometer several times per second. Disable this if it's not being
used in your application, or reduce its frequency for better overall performance.

@ Project Settings

Player

Configuration
MET Standard 2
t (.NET

Faster runtime

Method Name

Ensure your Accelerometer Frequency is disabled if you are not making use of it in your mobile game.

© 2024 Unity Technologies 410of 100 | unity.com

https://unity.com/releases/lts

Q | Project configuration |

Disable unnecessary Player or Quality settings

In the Player settings, disable Auto Graphics API for unsupported platforms to prevent
generating excessive shader variants. Disable Target Architectures for older CPUs if your
application is not supporting them.

In the Quality settings, disable needless Quality levels.

Disable unnecessary physics

If your game is not using physics, uncheck Auto Simulation and Auto Sync Transforms.
These will just slow down your application with no discernible benefit.

Choose the right frame rate

Mobile projects must balance frame rates against battery life and thermal throttling. Instead of
pushing the limits of your device at 60 fps, consider running at 30 fps as a compromise. Unity
defaults to 30 fps for mobile.

When targeting XR platforms, the frame rate considerations are even more critical. A

frame rate of 72 fps, 90 fps, or even 120 fps, is often necessary to maintain immersion and
prevent motion sickness. These higher frame rates help ensure a smooth and responsive
experience, which is crucial for comfort in VR environments. However, these come with their
own challenges in terms of power consumption and thermal management, particularly in
standalone VR headsets.

Choosing the right frame rate is about understanding the specific demands and constraints of
your target platform, whether it's a mobile device, a standalone VR headset, or an AR device.
By carefully selecting an appropriate frame rate, you can optimize both performance and user
experience across different platforms.

You can also adjust the frame rate dynamically during runtime with Application.
targetFrameRate. For example, you could drop below 30 fps for slow or relatively static
scenes and reserve higher fps settings for gameplay.

Avoid large hierarchies

Split your hierarchies. If your GameObjects do not need to be nested in a hierarchy, simplify
the parenting. Smaller hierarchies benefit from multithreading to refresh the Transforms in
your scene. Complex hierarchies incur unnecessary Transform computations and more cost to
garbage collection.

© 2024 Unity Technologies 42 0f 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

e | Project configuration

Transform once, not twice

Additionally, when moving Transforms, use Transform.SetPositionAndRotation to update both
position and rotation at once. This avoids the overhead of modifying a transform twice.

If you need to instantiate a GameObject at runtime, a simple optimization is to parent and
reposition during instantiation:

GameObject.Instantiate(prefab, parent);
GameObject.Instantiate(prefab, parent, position, rotation);

For more on Object.Instantiate, please see the Scripting API.

Vsync in XR, web, and mobile development

When developing for XR, web, and mobile platforms, assume that Vsync (Vertical
Synchronization) is enabled, even if you disable it in the Unity Editor (Project Settings >
Quality). Vsync is often enforced at the hardware level on these platforms to prevent screen
tearing and ensure smooth visual output. If the GPU cannot render a frame quickly enough to
match the display’s refresh rate, the current frame will be held and displayed again, effectively
reducing your fps. Let's look at how this works per platform.

— Mobile Platforms: Mobile devices typically enforce Vsync to match the display’s refresh
rate, often at 60Hz or higher on newer devices. If your application’s frame rate drops
below this target, the device will hold the previous frame, causing noticeable stuttering
or input lag. It's crucial to optimize rendering performance to maintain a steady frame
rate, ensuring smooth operation across a variety of mobile devices with different
performance capabilities.

— Web Platforms: Web browsers also tend to enforce Vsync, particularly in Unity Web, to
ensure synchronization with the display’s refresh rate. Given the additional overhead
of running within a browser, optimizing your application to maintain a consistent frame
rate is essential to avoid visible performance drops. Test across different browsers and
devices as web platforms can vary in their capabilities.

— XR Platforms: In XR environments, maintaining a high and stable frame rate is even more
critical due to the immersive nature of these experiences. Most XR devices enforce
Vsync at 90Hz or higher, and any drop in frame rate can lead to discomfort or motion
sickness for users. Optimizing every aspect of your application, from rendering to
physics calculations, is essential to ensure the GPU can consistently meet these high
demands.

By understanding how Vsync is managed across XR, web, and mobile platforms, and by

optimizing your application to maintain a consistent frame rate, you can deliver smoother,
more responsive experiences that meet the expectations of users on these diverse platforms.

© 2024 Unity Technologies 43 0f 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Transform.SetPositionAndRotation.html?
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Object.Instantiate.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Object.Instantiate.html

@ Programming and code architecture | Project configuration | Graphics and GPU optimization

Vsync Count

The Vsync Count setting in Unity’s Quality settings determines how the rendering of frames is
synchronized with the display’s refresh rate. When set to Every V Blank (equivalent to a Vsync
Count of 1), Unity synchronizes the rendering of frames with each vertical blank, effectively
capping the frame rate to match the display’s refresh rate (e.g., 60Hz = 60 FPS). This helps
prevent screen tearing and ensures smooth visual output.

Alternatively, setting it to Every Second V Blank (Vsync Count of 2) halves the frame rate,
which might be useful in situations where your application struggles to maintain full refresh
rate performance. Disabling Vsync (Don’t Sync) allows for maximum FPS but can result

in screen tearing. On some platforms, Vsync may still be enforced at the hardware level
regardless of this setting.

W #r @ = miv G~

(e TE1[14Y
Add Quality Level
Current Build Target: WindowsStandalone

Current Active Quality Lavel

VSync count within the Quality settings

© 2024 Unity Technologies 44 0f 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

Graphics and GPU

optimization

With each frame, Unity determines the objects that must be rendered and then creates draw
calls. A draw call is a call to the graphics API to draw objects (e.g., a triangle), whereas a batch
is a group of draw calls to be executed together.

As your projects become more complex, you'll need a pipeline that optimizes the workload
on your GPU. The Universal Render Pipeline (URP) supports three options for rendering:
Forward, Forward+, and Deferred.

Forward rendering evaluates all lighting in a single pass and is generally recommended as default
for mobile games. Forward+, introduced with Unity 2022 LTS, improves upon standard Forward
rendering by culling lights spatially rather than per object. This significantly increases the overall
number of lights that can be utilized in rendering a frame. Deferred mode is a good choice for
specific cases, such as for games with lots of dynamic light sources. The same physically based
lighting and materials from consoles and PCs can also scale to your phone or tablet.

© 2024 Unity Technologies 45 of 100 | unity.com

https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/index.html

| Graphics and GPU optimization |

The following table compares the three rendering options in URP.

Feature Forward Forward+ Deferred
Maxi
aximum Unlimited; the

number of real- o o

. . 9 per-Camera limit Unlimited

time lights per aplies

object PP
Two options:
Quantization of normals in G-buffer (loss of
accuracy, better performance

No encoding) v P)
. No encoding
Per pixel normal | (accurate .
. (accurate normal Octahedron encoding (accurate normals,
encoding normal . . -
values) might have significant performance impact
values) .

on mobile GPUs)
For more information, see Encoding of
normals in G-buffer.

MSAA Yes Yes No

Vertex lighting Yes No No
Supported with a limitation: Unity renders

Camera Ves Yes only the base Camera using the Deferred

stacking path; Unity renders all overlay Cameras

using the Forward Rendering path

Learn more about using URP in Unity projects in the e-book Introduction to the Universal
Render Pipeline for advanced Unity creators.

© 2024 Unity Technologies

46 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://unity.com/resources/introduction-to-urp-advanced-creators-unity-6
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/rendering/forward-plus-rendering-path.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/rendering/forward-plus-rendering-path.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/rendering/forward-plus-rendering-path.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/rendering/deferred-rendering-path.html#accurate-g-buffer-normals
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/rendering/deferred-rendering-path.html#accurate-g-buffer-normals

GPU optimization

To optimize your graphics rendering, it's essential to understand the limitations of your target
hardware — whether it's VR, mobile, or web — and how to effectively profile the GPU. Profiling
allows you to check and verify that your optimizations are having the desired impact.

— VR: VR hardware demands high frame rates (typically 90 FPS or higher) and low
latency to maintain a smooth and immersive experience. The GPU needs to render
complex scenes twice (once for each eye), which requires careful optimization of both
performance and visual fidelity.

— Mobile: Mobile devices have limited processing power and memory compared to
desktops and consoles. Optimizations should focus on minimizing draw calls, reducing
texture sizes, and using simplified shaders to ensure smooth performance without
draining the battery or overheating the device.

— Web: Web platforms, particularly when using Unity Web, must balance performance
with the constraints of running in a browser environment. Optimization should prioritize
reducing build size, minimizing load times, and ensuring compatibility across different
browsers and hardware configurations.

Use these best practices for reducing the rendering workload on the GPU.

Benchmark the GPU

When profiling, it's useful to start with a benchmark. A benchmark tells you what profiling
results you should expect from specific GPUs.

© 2024 Unity Technologies 47 of 100 | unity.com

https://unity.com/releases/lts

@ | GPU optimization |

See GFXBench for a great list of different industry-standard benchmarks for GPUs and
graphics cards. The website provides a good overview of the current GPUs available and how
they stack up against each other.

Watch the rendering statistics

Click the Stats button in the top right of the Game view. This window shows you real-time
rendering information about your application during Play mode. Use this data to help optimize
performance:

— fps: Frames per second

— CPU Main: Total time to process one frame (and update the Editor for all windows)
— CPU Render thread: Total time to render one frame of the Game view

— Batches: Groups of draw calls to be drawn together

— Tris (triangles) and Verts (vertices): Mesh geometry complexity

— SetPass calls: The number of times Unity must switch shader passes to render the
GameObjects onscreen; each pass can introduce extra CPU overhead.

Note: In-Editor fps does not necessarily translate to build performance. We recommend
that you profile your build for the most accurate results. Frame time in milliseconds is a
more accurate metric than frames per second when benchmarking.

Stats window displaying real-time rendering info

© 2024 Unity Technologies 48 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://gfxbench.com/result.jsp
http://www.mvps.org/directx/articles/fps_versus_frame_time.htm

e | GPU optimization

Reduce Draw Calls

When rendering a GameObject, it issues a draw call to the graphics API (e.g., OpenGL,
Vulkan, or Direct3D). Each draw call is resource-intensive, as the CPU must prepare and send
the necessary data to the GPU, which then processes the command to render the object.
Frequent state changes between draw calls, such as switching materials, can further increase
CPU overhead.

While PC and console hardware can handle a large number of draw calls, the overhead
remains significant enough to justify optimization. On mobile devices, VR headsets, and web
browsers, draw call optimization is crucial for maintaining performance. By reducing the
number of draw calls, you can ensure smoother and more efficient rendering, especially on
resource-constrained platforms.

To optimize performance, especially on web, VR, and mobile platforms, reducing draw calls is
essential. Here are key strategies to achieve this:

1. Use atexture atlas: Combine multiple textures into a single texture atlas to minimize
the number of texture bindings and draw calls. This is particularly important in web and
mobile environments where reducing state changes can improve rendering efficiency.

2. Optimize materials: Limit the number of materials and shaders used in your project.
Shared materials are easier to batch together and reduce the draw call overhead.

3. Implement LOD (Level of Detail): Use LOD techniques to decrease the complexity of
distant objects, reducing the number of draw calls for objects that are far from the
camera. This approach is vital for VR, where maintaining high frame rates is critical to
prevent motion sickness, and for mobile platforms, where processing power is limited.

4. Apply culling techniques: Use frustum culling and occlusion culling to ensure that only
visible objects are rendered. By not drawing objects that are outside the camera’s view
or obscured by other geometry, you can reduce the number of draw calls, improving
performance across all platforms, especially in resource-constrained web and mobile
environments.

Use draw call batching

Draw call batching is an optimization method that combines meshes so that Unity can render
them in fewer draw calls.

Draw call batching minimizes these state changes and reduces the CPU cost of rendering
objects. Unity can combine multiple objects into fewer batches using several techniques:

— SRP Batching: If you are using HDRP or URP, enable the SRP Batcher in your Pipeline
Asset settings under Advanced. When using compatible shaders, the SRP Batcher
reduces the GPU setup between draw calls and makes material data persistent in GPU
Memory. This can speed up your CPU rendering times significantly. Use fewer Shader
Variants with a minimal amount of Keywords to improve SRP batching. Consult this SRP
documentation to see how your project can take advantage of this rendering workflow.

© 2024 Unity Technologies 49 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/DrawCallBatching.html?
https://blog.unity.com/engine-platform/srp-batcher-speed-up-your-rendering
https://docs.unity3d.com/6000.0/Documentation/Manual/SL-MultipleProgramVariants.html?
https://docs.unity3d.com/6000.0/Documentation/Manual/SL-MultipleProgramVariants.html?
https://docs.unity3d.com/6000.0/Documentation/Manual/SRPBatcher.html
https://docs.unity3d.com/6000.0/Documentation/Manual/SRPBatcher.html

@ Graphics and GPU optimization | GPU optimization | Shaders |

Addressable

General

Quality
Lighting

Shadows

Post-processing

Advanced

SRP Batcher

tching

Lighting v
Disabled
Shader Variant L Disabled

SRP Batcher helps you batch draw calls.

GPU instancing: If you have a large number of identical objects (e.qg., buildings, trees,
grass, and so on with the same mesh and material), use GPU instancing. This technique
batches them using graphics hardware. To enable GPU Instancing, select your material
in the Project window, and in the Inspector, check Enable Instancing.

Static batching: For non-moving geometry, Unity can reduce draw calls for any meshes
sharing the same material. It is more efficient than dynamic batching, but it uses more
memory.

Mark all meshes that never move as Batching Static in the Inspector. Unity combines
all static meshes into one large mesh at build time. The StaticBatchingUtility also allows
you to create these static batches yourself at runtime (for example, after generating a
procedural level of non-moving parts).

Dynamic Batching: For small meshes, Unity can group and transform vertices on the
CPU, then draw them all in one go. Note: Do not use this unless you have enough
low-poly meshes (no more than 300 vertices each and 900 total vertex attributes).
Otherwise, enabling it will waste CPU time looking for small meshes to batch.

You can maximize the effects of batching with a few simple rules:

© 2024 Unity Technologies

Use as few textures in a scene as possible. Fewer textures require fewer unique
materials, making them easier to batch. Additionally, use texture atlases wherever
possible.

Always bake lightmaps at the largest atlas size possible. Fewer lightmaps require fewer
material state changes, but keep an eye on the memory footprint.

Be careful not to instance materials unintentionally. Accessing Renderer.material in
scripts duplicates the material and returns a reference to the new copy. This breaks
any existing batch that already includes the material. If you wish to access the batched
object’s material, use Renderer.sharedMaterial instead.

50 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/GPUInstancing.html
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/StaticBatchingUtility.html?
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Renderer-material.html?
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/Renderer-sharedMaterial.html?

@ Graphics and GPU optimization | GPU optimization | Shaders |

— Keep an eye on the number of static and dynamic batch counts versus the total draw call
count by using the Profiler or the rendering stats during optimizations.

Please refer to the Draw Call Batching documentation for more information.

GPU Resident Drawer

The GPU Resident Drawer (available for both URP and HDRP) is a GPU-driven rendering
system that optimizes CPU time to boost performance. It supports cross-platform rendering,
including high-end mobile platforms using Vulkan and Metal, and is designed to work out-of-
the-box with existing projects.

The GPU Resident Drawer uses the BatchRendererGroup API to draw GameObjects with GPU
instancing, which reduces the number of draw calls and frees CPU processing time. The GPU
Resident Drawer works only with the following:

— The Forward+ rendering path

— Graphics APIs and platforms that support compute shaders, except OpenGL ES

— GameObjects that have a Mesh Renderer component

Rendering

=~ Instanced Drawing

GPU Resident Drawer: Selecting Instanced Drawing in the Render Pipeline Asset
Upon selecting the Instanced Drawing option you may get a message in the Ul warning you

that “BatchRenderGroup Variants setting must be ‘Keep All"”. Adjusting this option in the
graphics settings completes the setup for the GPU Resident Drawer.

© 2024 Unity Technologies 510f 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/DrawCallBatching.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/gpu-resident-drawer.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@17.0/manual/gpu-resident-drawer.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/gpu-resident-drawer.html
https://docs.unity3d.com/Manual/batch-renderer-group.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/rendering/forward-plus-rendering-path.html
https://docs.unity3d.com/6000.0/Documentation/Manual/GraphicsAPIs.html
https://docs.unity3d.com/6000.0/Documentation/Manual/class-MeshRenderer.html

@ Graphics and GPU optimization | GPU optimization | Shaders |

: ings
2> @ =v mv D
Graphics

fault Re

:"‘
l““

Strip if no Entities Grephics package
Strip All
(¥ Keep All

Set the BatchRenderGroup Varient to Keep All within the Graphics settings.

Use the Frame Debugger

The Frame Debugger shows how each frame is constructed from individual draw calls. This
is an invaluable tool for troubleshooting your shader properties that can help you analyze the
way your game is rendered.

The Frame Debugger breaks each frame into its separate steps.

New to the Frame Debugger? Check out this introductory tutorial here.

© 2024 Unity Technologies 52 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/FrameDebugger.html
https://learn.unity.com/tutorial/working-with-the-frame-debugger

e | GPU optimization

Split Graphics Jobs

This threading mode, supported on multiple desktop and console platforms, aims to
improve CPU multi-threading performance. The primary improvement comes from reducing
unnecessary synchronization between the main thread (responsible for general game logic
and orchestration) and native graphics job threads (responsible for rendering tasks).

The performance improvements from this new threading mode scale with the number of draw
calls submitted in each frame. Scenes with more draw calls, e.g., complex scenes with many
objects and textures, can see significant performance enhancements.

Avoid too many dynamic lights

When developing for XR, mobile, or web platforms, it's important to limit the use of dynamic
lights, especially when using forward rendering. Dynamic lights can significantly impact
performance, leading to frame rate drops and increased power consumption, which is
particularly critical in resource-constrained environments.

Instead, consider using alternatives such as custom shader effects and light probes for
dynamic objects, which can simulate lighting without the heavy performance cost. For static
objects, baked lighting is a more efficient option, as it provides high-quality lighting without
the runtime overhead. By carefully managing lighting, you can maintain visual quality while
optimizing performance across XR, mobile, and web applications.

See this feature comparison table for the specific limits of URP and Built-in Render Pipeline
real-time lights.

© 2024 Unity Technologies 53 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/render-pipelines-feature-comparison.html

@ Graphics and GPU optimization | GPU optimization | Shaders |

Disable shadows

Shadow casting can be disabled per MeshRenderer and light. Disable shadows whenever
possible to reduce draw calls.

You can also create fake shadows using a blurred texture applied to a simple mesh or quad
underneath your characters. Otherwise, you can create blob shadows with custom shaders.

W & #y B =y vy D

%

Transform

Ball_Part (Mesh Filter)

Mesh Renderer

Twe Sided
Shadows Only

Disable shadow casting to reduce draw calls.

Bake your lighting into lightmaps

Add dramatic lighting to your static geometry using Global lllumination (GI). Mark objects with
Contribute Gl so you can store high-quality lighting in the form of lightmaps.

Enable the Contribute Gl setting.

© 2024 Unity Technologies 54 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

@ Graphics and GPU optimization | GPU optimization | Shaders |

Baked shadows and lighting can then render without a performance hit at runtime. The
Progressive CPU and GPU Lightmappers can accelerate the baking of Global lllumination.

o

Lightmaps

To limit memory usage, adjust the Lightmapping Settings (Windows > Rendering > Lighting Settings) and Lightmap size.

Follow the manual guide and this article on light optimization to get started with Lightmapping
in Unity.

GPU light baking

The Progressive GPU Lightmapper is production-ready in Unity 6. It's designed to dramatically
accelerate lighting data generation by leveraging the power of the GPU, offering faster bake
times compared to traditional CPU lightmapping. This system introduces a new light baking
backend that simplifies the codebase and delivers more predictable results. Additionally, the
minimum GPU requirement has been lowered to 2GB, making this feature accessible to a wider
range of developers. It also includes a new API for moving light probe positions at runtime,
which is particularly useful for procedurally-generated content, alongside various quality-of-
life improvements.

Selecting the Progressive GPU Lightmapper

© 2024 Unity Technologies 55 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/6000.0/Documentation/Manual/Lightmapping.html
https://unity.com/de/archive/blog/games/lighting-tips-for-mobile-game-development
https://docs.unity3d.com/6000.0/Documentation/Manual/GPUProgressiveLightmapper.html

@ Graphics and GPU optimization | GPU optimization | Shaders |

Use Light Layers

For complex scenes with multiple lights, separate your objects using layers, then confine each

light's influence to a specific culling mask.

Culling Mask

Layers can limit your light's influence to a specific culling mask.

Adaptive Probe Volumes

Unity 6 introduces Adaptive Probe Volumes (APVs), which provide a sophisticated solution
for handling global illumination in Unity, allowing for dynamic and efficient lighting in complex
scenes. APVs can optimize both performance and visual quality, particularly on mobile and
lower-end devices, while offering advanced capabilities for high-end platforms.

Adaptive Probe Volumes (APV) in Unity offer a range of features to enhance global
illumination, particularly in dynamic and large scenes. URP now supports per-vertex sampling
for improved performance on lower-end devices, while VFX particles benefit from indirect

lighting baked into probe volumes.

© 2024 Unity Technologies

Nothing
Fverything
Default
TransparentFX
Ignore Raycast
Water

ul

3DSkybox

WaterFXx

. lerrain

Boat

Player1
Player2
Player3
Player4
Otherthing

Blocker

56 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/probevolumes-concept.html

@ | Graphics and GPU optimization | GPU optimization | Shaders |

Placing APVs in the oasis environment from the URP 3D Sample

APV data can be streamed from disk to CPU and GPU, optimizing lighting information for large
environments. Developers can bake and blend multiple lighting scenarios, allowing real-time
transitions like day/night cycles. The system also supports sky occlusion, integrates with the
Ray Intersector API for more efficient probe calculations, and offers control over light probe
sample density to reduce light leaking and speed up iterations. The new C# baking API further
refines the workflow, enabling independent baking of APV from lightmaps or reflection probes.

To get started, check out the talk Efficient and impactful lighting with Adaptive Probe Volumes
from GDC 2023

& Lighting

The Adaptive Probe Volumes window, located in Lighting settings

© 2024 Unity Technologies 57 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/demos/urp-3d-sample
https://www.youtube.com/watch?v=iU7X5xICkc8
https://www.youtube.com/watch?v=iU7X5xICkc8

@ | GPU optimization |

Use Level of Detail (LOD)

As objects move farther from the camera, Level of Detail (LOD) can adjust or switch them to
use simpler meshes with simpler materials and shaders, to refine GPU performance.

Transform

& + LOD Group

el to Came

Example of a mesh using an LOD Group

Hero_Mountain_LODO Hero_Mountain_LOD1 Hero_Mountain
4734 Vert 8811 Triangles | UV1 2399 Vertices, 4334 Triangles | UV1 1248 Vertic 2151 T

Source meshes, modeled at varying resolutions

See the Working with LODs course on Unity Learn for more detail.

© 2024 Unity Technologies 58 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://docs.unity3d.com/Manual/LevelOfDetail.html?
https://learn.unity.com/tutorial/working-with-lods-2019-3

| GPU optimization |

Use occlusion culling to remove hidden objects

Objects hidden behind other objects can potentially still render and cost resources. Use
occlusion culling to discard them.

While frustum culling outside the camera view is automatic, occlusion culling is a baked

process. Simply mark your objects as Static Occluders or Occludees, then bake via Window
> Rendering > Occlusion Culling. Though not necessary for every scene, culling can improve
performance in specific cases, so be sure to profile before and after enabling occlusion culling

to check if it has improved performance.

Check out the Working with Occlusion Culling tutorial for more information.

GPU occlusion culling

GPU occlusion culling significantly improves rendering performance, especially in scenes
with complex geometries and many occluded objects. GPU occlusion culling boosts the
performance of GameObjects by reducing the amount of overdraw for each frame, which

means the renderer is not wasting resources drawing things that are not seen, an issue that

traditionally has been a significant performance bottleneck in 3D environments. The key

features of GPU occlusion culling include:

GPU acceleration: Unlike previous versions that relied heavily on CPU for occlusion
culling, Unity 6 leverages GPU acceleration. This shift allows for more efficient real-time
calculations, reducing the overhead on the CPU and enabling more complex scenes
without sacrificing performance.

Integration with GPU Resident Drawer: The GPU occlusion culling works in tandem with
the GPU Resident Drawer, which handles large sets of objects and their visibility, further
optimizing rendering pipelines for both static and dynamic objects.

Dynamic and static object culling: Unity 6's occlusion culling system can manage both
static and dynamic objects more effectively. Dynamic objects are now culled using a
portal-based system, which ensures that only the visible objects are processed, even
when they move within the scene.

Baking and real-time adjustments: Developers can bake occlusion data in the Editor,
which is then used at runtime. This process divides the scene into cells and computes
visibility between them, allowing for real-time adjustments as the camera moves. The
system also supports visualizing occlusion culling in the Editor, helping developers
optimize their scenes better.

Memory management: Unity 6 provides tools to manage the memory footprint
of occlusion data, allowing fine-tuning of the occlusion culling process to balance
performance with memory usage.

To activate GPU occlusion culling locate the Render Pipeline Asset and toggle the GPU
Occlusion check box.

© 2024 Unity Technologies

59 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://learn.unity.com/tutorial/working-with-occlusion-culling
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/gpu-culling.html

@ Graphics and GPU optimization | GPU optimization | Shaders |

Quality

Lighting

The GPU Occlusion Culling option in the Render Pipeline Asset

Avoid mobile native resolution

With phones and tablets becoming increasingly advanced, newer devices tend to sport very
high resolutions.

You can use Screen.SetResolution(width, height, false) to lower the output resolution and
regain some performance. Profile multiple resolutions to find the best balance between quality
and speed.

Limit use of cameras

Each enabled camera incurs some overhead, whether it’s doing meaningful work or not. Only
use Camera components required for rendering. On lower-end mobile platforms, each camera
can use up to 1 ms of CPU time.

Spatial-Temporal Post-Processing

Spatial-Temporal Post-Processing (STP) is designed to enhance visual quality across a wide
range of platforms, from mobile devices to consoles and PCs. STP is a spatio-temporal anti-
aliasing upscaler that works with both HDRP and URP render pipelines, offering high-quality
content scaling without the need for changes to existing content. This solution is optimized

© 2024 Unity Technologies 60 of 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

@ | Graphics and GPU optimization | GPU optimization | Shaders |

for GPU performance, ensuring faster rendering times and making it easier to achieve high
performance while maintaining visual quality.

To enable STP in the URP:

— Select the active URP Asset in the Project window.

— In the Inspector navigate to Quality > Upscaling Filter, and select Spatial-Temporal
Post-Processing.

Enabling STP within the URP Asset

© 2024 Unity Technologies 610f 100 | unity.com

https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts
https://unity.com/releases/lts

Shaders

Keep shaders simple and optimized

URP offers a range of lightweight Lit and Unlit shaders that are optimized for mobile platforms,
making them a great starting point for your web, mobile, and XR projects. To maximize
performance, keep your shader variations to a minimum, as multiple variants can impact
runtime memory usage, particularly on resource-constrained devices.

If the default URP shaders don't meet your specific needs, you can customize them using
Shader Graph, which allows you to visually design and optimize shaders for your project. Here
are a few shader optimization tips:

— Minimize calculations: Simplify shaders by reducing the number of operations,
especially in fragment shaders, where each pixel requires computation. Avoid complex
mathematical operations and heavy branching logic (e.g., if statements), which can be
taxing on the GPU, particularly in mobile and XR applications.

— Use combined textures: Utilize combined textures like occlusion, roughness, and
metallic (ORM) maps to reduce the number of texture lookups. This approach
consolidates multiple maps into a single texture, lowering the workload on the GPU,
which is c